K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

Theo định lý tổng bốn góc trong tứ giác, ta có: \(\widehat{E}+\widehat{F}+\widehat{G}+\widehat{H}=360^o\)

Theo đề ra: \(\hept{\begin{cases}\widehat{E}=70^o\\\widehat{F}=80^o\end{cases}\Rightarrow\widehat{G}+\widehat{H}=360^o-70^o-80^o=210^o}\)

Theo đề ra: \(\widehat{G}-\widehat{H}=20^o\Rightarrow\hept{\begin{cases}\widehat{G}=\frac{210^o+20^o}{2}=115^o\\\widehat{H}=115^o-20^o=95^o\end{cases}}\)

H E F G

5 tháng 12 2021

ΔDFG= ΔCHG(GD=GC;DF=CH;góc FDG=gócHCG)
=>GF=GH(1)
 ΔEFB= ΔEHA(FB=HA;EB=EA;gócEAH=gócABF)
=>EF=EH(2)
TỪ 1 và 2=> tứ giác EFGH là hình thoi

20 tháng 10 2023

 

MN//EF

=>\(\widehat{N}+\widehat{E}=180^0\)

mà \(\widehat{N}=\widehat{E}\)

nên \(\widehat{N}=\widehat{E}=\dfrac{180^0}{2}=90^0\)

\(5\cdot\widehat{N}=4\cdot\widehat{F}\)

=>\(\widehat{F}=\dfrac{5}{4}\cdot\widehat{N}=\dfrac{5}{4}\cdot90=112.5^0\)

MN//EF

=>\(\widehat{M}+\widehat{F}=180^0\)

=>\(\widehat{M}=180^0-112.5^0=67.5^0\)

8 tháng 7 2022

a)  Gọi M và N lần lượt là giao điểm của AE, BF với CD.

Ta có: A D E ^ = 1 2 D ^  ngoài, D A E ^ = 1 2 A ^  ngoài.

Mà A ^  ngoài + D ^  ngoài = 1800 (do AB//CD)

⇒   A D E ^ + D A E ^ = 90 0 , tức là tam giác ADE vuông tại E.

Khi đó, tam giác ADM cân tại D (do có DE vừa là đường phân giác, vừa là đường cao) và E là trung điểm của AM.

Chứng minh tương tự, ta được F olaf trung điểm của BN.

Từ khó, suy ra EF là đường trung bình của hình thang ABNM và ta được ĐPCM

b) Từ ý a),  EF = 1 2 ( A B + B C + C D + D A )

16 tháng 10 2022

a: 

góc AMD=180 độ-góc MAD-góc MDA

\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)

\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)

Gọi giao của AM với DC là M'

Xét ΔDM'A có

DM là đường cao, là đường phân giác

nên ΔDM'A cân tại D

=>M là trung điểm của AM'

Gọi giao của BN với DC là N'

Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)

\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)

\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)

=90 độ

Xét ΔCN'B có

CN vừa là đường cao, vừa là phân giác

nên ΔCN'B cân tại C

=>N là trug điểm của BN'

Xét hình thang ABN'M' có

M,N lần lượt là trung điểm của AM' và BN'

nen MN là đường trung bình

=>MN//CD//AB

b: MN=(AB+M'N')/2

=(AB+M'D+CD+CN')/2

mà M'D=AD và CN'=CB

nên MN=(AB+CD+AD+CB)/2

8 tháng 7 2022

a)  Gọi M và N lần lượt là giao điểm của AE, BF với CD.

Ta có: A D E ^ = 1 2 D ^  ngoài, D A E ^ = 1 2 A ^  ngoài.

Mà A ^  ngoài + D ^  ngoài = 1800 (do AB//CD)

⇒   A D E ^ + D A E ^ = 90 0 , tức là tam giác ADE vuông tại E.

Khi đó, tam giác ADM cân tại D (do có DE vừa là đường phân giác, vừa là đường cao) và E là trung điểm của AM.

Chứng minh tương tự, ta được F olaf trung điểm của BN.

Từ khó, suy ra EF là đường trung bình của hình thang ABNM và ta được ĐPCM

b) Từ ý a),  EF = 1 2 ( A B + B C + C D + D A )

31 tháng 7 2020

Trả lời:

Xét hình thang EFGH có \(EF//GH\)

\(\Rightarrow\widehat{E}+\widehat{H}=180^0\)(trong cùng phía )

mà \(7\widehat{E}=8\widehat{H}\left(gt\right)\Rightarrow\widehat{H}=\frac{7\widehat{E}}{8}\)

\(\Rightarrow\widehat{E}+\frac{7\widehat{E}}{8}=180^0\)

\(\Leftrightarrow\frac{8\widehat{E}+7\widehat{E}}{8}=180^0\)

\(\Leftrightarrow\frac{15\widehat{E}}{8}=180^0\)

\(\Leftrightarrow15\widehat{E}=1440^0\)

\(\Leftrightarrow\widehat{E}=96^0\)

\(\Rightarrow\widehat{H}=180^0-96^0=84^0\)

Vậy \(\widehat{E}=96^0\) , \(\widehat{H}=84^0\)