Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ BE // AD (E thuộc CD) ---> ^BEC = ^ADC = 60*
ABED là hình bình hành ---> DE = 2 ---> EC = 4
Tam giác BEC có ^BEC = 60*; ^BCE = 30* nên nó bằng nửa tam giác đều
---> BE = EC/2 = 2
Gọi BH là đường cao hình thang.
Tam giác BEH cũng là nửa tam giác đều (vì ^BEH = 60*; ^BHE = 90*)
---> EH = BE/2 = 1
---> BH^2 = BE^2 - EH^2 = 2^2 - 1 = 3 ---> BH =√ 3 (cm)
Trả lời : √3 cm.
AB // CD (gt) nên \(\widehat{A}+\widehat{D}=180^0\)
Mà \(\widehat{A}=\widehat{B}\Rightarrow\widehat{B}+\widehat{D}=180^0\)
Do đó: ABCD là tứ giác nội tiếp nên có 1 đường tròn đi qua cả 4 đỉnh A,B,C,D
Gọi M là trung điểm của AD
Vì M và F là trung điểm của lần lượt AD và BD nên: \(MF=\frac{1}{2}AB\left(1\right)\)
Vì M và E là trung điểm của lần lượt AD và AC nên: \(ME=\frac{1}{2}CD\left(2\right)\)
Mà AB//CD ( gt ) nên M vè E và F thẳng hàng
\(\Rightarrow EF=ME-MF\left(3\right)\)
Thay \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow EF=\frac{1}{2}CD-\frac{1}{2}AB\)
Hay \(EF=\frac{AB-CD}{2}\left(đpcm\right)\)
Câu hỏi của headsot96 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo!