K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2021

Xét tứ giác ABCD có 

ˆBAD+ˆBDC=1800

Do đó: ABCD là tứ giác nội tiếp

hay A,B,C,D cùng thuộc một đường tròn

Bán kính là trung điểm của BC

Xét tứ giác ABCD có 

\(\widehat{BAD}+\widehat{BDC}=180^0\)

Do đó: ABCD là tứ giác nội tiếp

hay A,B,C,D cùng thuộc một đường tròn

Bán kính là trung điểm của BC

17 tháng 11 2017

Gọi AC cắt BD ở E

Tứ giác ABCD là hcn , AC cắt BD ở E => EA=EB=EC=EC = AC/2 

=> A,B,C,D thuộc đường tròn tâm E bán kính = AC/2

Xét tam giác ABC vuông tại b => AC^2=AB^2+BC^2 = 12^2+5^2=169

=> AC = 13 cm

=> Bán kính của đường tròn đó là AC/2 = 13/2 = 6,5 cm

17 tháng 11 2017

Gọi O là giao điểm hai đường chéo của hình chữ nhật, ta có OA = OB = OC= OD.

Bốn điểm A, B, C, D, cách đều điểm O nên bốn điểm này cùng thuộc một đườngt ròn  (tâm O, bán kính OA).

Xét tam giác ABC vuông tại B, có

AC2 = AB2 + BC2 = 122 + 52 = 169 ⇒ AC = \(\sqrt{169}\) = 13

Bán kính của đườngtròn là

OA = \(\frac{AC}{2}\) = \(\frac{13}{2}\) = 6,5 (cm)

Vậy bán kính đường tròn bằng 6,5 cm.

8 tháng 7 2018

A B D C O

Gọi O là giao điểm của hai đường chéo AC và BD.

Ta có OA = OB = OC = OD nên bốn điểm A, B,C,D thuộc cùng một đường tròn( tâm O, bán kính OA).

AC2 = AD2 + DC2 = 122 + 162 = 400

=> AC = 20

Bán kính của đường tròn bằng 10cm.

17 tháng 2 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

Gọi O là giao điểm của hai đường chéo AC và BD.

Ta có OA = OB = OC = OD (tính chất) nên bốn điểm A, B, C, D thuộc cùng một đường tròn (tâm O, bán kính OA)

Theo định lí Pitago trong tam giác vuông ABC có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Nên bán kính đường tròn là OA = 13 : 2 = 6.5 cm

15 tháng 1 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Gọi O là giao điểm của hai đường chéo AC và BD.

Ta có OA = OB = OC = OD (tính chất) nên bốn điểm A, B, C, D thuộc cùng một đường tròn (tâm O, bán kính OA)

Theo định lí Pitago trong tam giác vuông ABC có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Nên bán kính đường tròn là OA = 13 : 2 = 6.5 cm

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

hay BC=13cm

Ta có: ΔABC vuông tại A

nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC

hay \(R=\dfrac{BC}{2}=\dfrac{13}{2}=6.5\left(cm\right)\)

Bài 2: 

Ta có: ABCD là hình thang cân

nên A,B,C,D cùng thuộc 1 đường tròn\(\left(đl\right)\)

hay bán kính đường tròn ngoại tiếp ΔABC cũng là bán kính đường tròn ngoại tiếp tứ giác ABCD

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Suy ra: Bán kính của đường tròn ngoại tiếp tứ giác ABCD là \(R=\dfrac{BC}{2}=10\left(cm\right)\)

22 tháng 3 2016

Gọi O là giao điểm hai đường chéo của hình chữ nhật, ta có OA=OB=OC=OD.

Bốn điểm A, B, C, D, cách đều điểm O nên bốn điểm này cùng thuộc một đường tròn.

Xét tam giác ABC vuông tại B, có AC^2=AB^2+BC^2=12^2+5^12=169  sUY RA AC = 13

Bán kính của đường tròn là R = 13 : 2  = 6,5

Nhận xét: Để chứng minh nhiều điểm cùng nằm trên một đường tròn, ta chứng minh các điểm này cùng cách đều một điểm.