K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2019

. a) HS tự chứng minh

b) Kẻ đường cao AH, BK,chứng minh được DH = CK

Ta được   H D = C D − A B 2 = 3 c m

Þ AH = 4cm Þ  SABCD = 20cm2

18 tháng 5 2018

AB = ?????? bao nhiêu hã bạn

12 tháng 2 2020

Xét △ABD và △BAC có :

   AD = BC (gt)

   AB chung

   ^A = ^B (gt)

\(\Rightarrow\)△ABD = △BAC (cgc)

\(\Rightarrow\)^ADB = ^ BCA

Mà ^ADC = ^BCD

\(\Rightarrow\)^ODC = ^OCD

Lại có : AC ⊥ BD

\(\Rightarrow\)△OCD vuông cân tại O

Chứng minh tương tự với △OAB :

\(\Rightarrow\)ĐPCM

12 tháng 2 2020

Áp dụng định lí Pitago vào  △OAB vuông tại O có :

Có: OA2  + OB2 = AB2

=> 2OA2 = 16

=> OA = \(2\sqrt{2}\)cm

Tương tự: OD = \(4\sqrt{2}\)cm

Kẻ MN đi qua O và vuông góc với AB(tại M) và CD(tại N)

=> M là trung điểm AB ; N là trung điểm CD (vì ABCD là hình thang cân)

Có: OM2 = OA2 - AM2 = \(\left(2\sqrt{2}\right)^2-2^2\) = 8 - 4 = 4 cm

=> OM = 2cm

Tương tự chứng minh :

=> ON = 4 cm

=> MN = 6 cm

Vậy SABCD = \(\frac{\left(4+8\right).6}{2}=36\)  cm2