Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc D=góc C
DO đó: ΔAHD=ΔBKC
Suy ra: HD=KC
b: AB=HK=6cm
=>HD=KC=(15-6)/2=4,5cm
A B C D H K
a, Xét hình thang cân ABCD ta có:
\(AD=BC;\widehat{ADC}=\widehat{BCD}\)(theo tính chất của hình thang cân)
Xét tam giác AHD vuông tại H và tam giác BKC vuông tại K ta có:
\(AD=BC;\widehat{ADH}=\widehat{BCK}\left(cmt\right)\)
Do đó tam giác AHD=tam giác BKC(cạnh huyền - góc nhọn)
=> HD=KC(cặp cạnh tương ứng)(đpcm)
b, Xét hình chữ nhật ABKH ta có:
\(AB=HK\)
mà \(AB=6\left(cm\right)\Rightarrow HK=6\left(cm\right)\)
Ta có:
\(DH+HK+KC=DC\)
mà \(DH=KC\)(cmt)
nên \(2DH+HK=15\Rightarrow2DH=15-HK=15-6=9\)
\(\Rightarrow DH=\dfrac{9}{2}=4,5\left(cm\right)\)
Vậy \(DH=CK=4,5cm\)
Chúc bạn học tốt!!!
A B D H K C
Xét hình thang cân ABCD ( AB // CD )
\(\Rightarrow\hept{\begin{cases}\widehat{D}=\widehat{C}\\AD=BC\end{cases}\left(t/c\right)}\)
Xét \(\Delta ADH=\Delta BCK\)
\(\hept{\begin{cases}\widehat{AHD}=\widehat{BKC}\left(=90^o\right)\\AD=BC\left(cmt\right)\\\widehat{D}=\widehat{C}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta ADH=\Delta BCK\) ( ch - gn )
\(\Rightarrow AH=BK\) ( 2 cạnh tương ứng )
b) Vì \(\Delta ADH=\Delta BCK\left(cmt\right)\)
\(\Rightarrow DK=CK\) ( 2 cạnh tương ứng )
Chúc bạn học tốt !!!
Xét tam giác AHD vuông tại H và tam giác BKC vuông tại K
Ta có: AD= BC (gt)
Góc D = góc C
=> tam giác AHD= tam giác BKC (cạnh huyền- góc nhọn)
=> DH= CK ( 2 cạnh tương ứng)
xét tam giác AHD và tam giác BKC có:
AD = BC (gt)
góc ADH = góc BCK (gt)
góc AHD = góc AKC = 900
=> tam giác ... = tam giác .... (ch-gn)
=> DH = CK (cạnh tương ứng)
t i c k nha!! 463745768658897697696789768568654
A B D C H K
Có hình thang ABCD cân
⇒AD=BC ; ∠ADC=∠BCD
Có AH⊥DC
⇒∠AHD=∠AHC
Có BK⊥DC
⇒∠BKC=∠BKD
* Xét △AHD(∠AHD=90) và ΔBKC(∠BKC=90) có
AD=BC(c/m trên)
∠ADH=∠BCK
⇒△AHD=ΔBKC( cạnh huyền-góc nhọn)
⇒DH=KC(2 cạnh tương ứng)(đpcm)