Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)
\(\widehat{AOB}=\widehat{COD}\)
Do đó: ΔOAB\(\sim\)ΔOCD
b: Xét hình thang ABCD có HK//AB//CD
nên AH/AD=BK/BC(1)
Xét ΔADC có OH//DC
nên OH/DC=AH/AD(2)
Xét ΔBDC có OK//DC
nên OK/DC=BK/BC(3)
Từ (1), (2) và (3) suy ra OH=OK
hay O là trung điểm của HK
a;Vì AB//CD nên theo định lí Ta-lét ta có:
OA/OC=OB/ODOAOC=OBOD
⇒OA.OD=OC.OB⇒OA.OD=OC.OB
b;Xét ΔAOHΔAOH và ΔCOKΔCOKcó:
AHOˆ=CKO=90oˆAHO^=CKO=90o^
AOHˆ=COKˆAOH^=COK^ (hai góc đối đỉnh)
⇒ΔAOH ΔCOK(g.g)⇒ΔAOH ΔCOK(g.g)
⇒OAOC=OHOK(1)⇒OAOC=OHOK(1)
Vì AB//CD nên theo hệ quả của định lí Ta-lét ta có
ABCD=OAOC(2)ABCD=OAOC(2)
Từ 1 và 2 ta có:
OHOK=ABCD
a) Xét tam giác ABD và tam giác BAC có
AB chung
goc BAD = góc ABC ( ABCD là hình thang cân )
AD=BC ( ABCD là hình thang cân )
Vậy tam giác ABD = tam giác BAC ( c-g-c)
=> góc ABD = góc BAC => tam giác AOB cân tại O
b)
Ta có KD=KC=> K nằm trên đường trung trực DC (*)
Ta lại có :
OD=DB-OB
OC=AC-AO
mà BD=AC ( 2 đường chéo hình thang cân ABCD )
OB=AO (tam giác AOB cân tại O)
=> OD=OC => O nằm trên đường trung trực DC (**)
Xét tam giác IAD và tam giác IBC có
AI=IB( I là trung điềm AB)
góc IAD = góc IBC ( ABCD là hình thang cân)
AD=AB ( ABCD là hình thang cân)
Vậy tam giác IAD = tam giác IBC(c-g-c)
=> ID=IC=> I nằm trên đường trung trực DC (***)
Từ (*)(**)(***)=> I,O,K thẳng hàng
nha . Chúc bạn học tốt
bài này trong sách nào vậy ạ, vì mình đang cần gấp nên nếu bạn biết chỉ giúp mình với, mình ck bạn 10k coi như phí đc k ạ !!!
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Ta có hình vẽ: A B C D K H O
Cách 1: Vì AB // CD
Và K và H lần lượt là trung điểm của các cạnh AB và CD. Vì trung điểm nằm giữa các đường thẳng
=> K và H thẳng hàng
Điểm O cũng thẳng hàng với K , H vì O là điểm cắt của hai dường chéo AC ; BD (như hình vẽ)
Vậy từ các lập luận trên ta đã có thể biết rằng ba điểm H, O , K thẳng hàng.
Cách 2: Nhìn các nét đứt trong hình vẽ trên:
Ta nhận xét : Ba điểm H , O , K đều nằm trên nét đứt
\(\RightarrowĐPCM\)