K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

a)

x = 1800 – 800 = 1000

y = 1800 – 400 = 1400

b)

x = 700 (đồng vị)

y = 500 (so le trong)

c)

x = 1800 – 900 = 900

y = 1800 – 650 = 1150

21 tháng 4 2017

Bài giải:
a)

x = 1800 – 800 = 1000

y = 1800 – 400 = 1400

b)

x = 700 (đồng vị)

y = 500 (so le trong)

c)

x = 1800 – 900 = 900

y = 1800 – 650 = 1150

22 tháng 4 2017
Xét \(\Delta\)ABD và \(\Delta\)BDC có:
\(\widehat{DBC}=\widehat{DBC}\left(gt\right)\)
\(\Rightarrow\Delta\)ABD ∽ \(\Delta\)BDC(trường hợp 3)
\(\Rightarrow\dfrac{AB}{BD}=\dfrac{DB}{DC}\Rightarrow BD^2=AB.BC\)
=> BD = \(\sqrt{ }\)(AB.DC) = \(\sqrt{ }\)(12,5.8,5) = \(\sqrt{ }\)356,25 => BD = 18,9 cm
22 tháng 4 2017

Xét ∆ABD và ∆BDC có:

2016-01-16_190637

=> ∆ABD ∽ ∆BDC(trường hợp 3)

2016-01-16_190746

=> BD = √(AB.DC) = √(12,5.8,5) = √356,25 => BD = 18,9 cm

22 tháng 2 2024

Để chứng minh rằng MN=PQ, ta sẽ sử dụng tính chất của các tam giác đồng dạng.

Gọi X là giao điểm của MQNP.

Ta có các tam giác đồng dạng sau:

MQXNPX (do MQ song song với NP, XM song song với PN và góc MXQPXN là góc đồng phía nội tiếp giữa hai đoạn thẳng MQNP).XMDXCB (do MQ song song với CBMD song song với BX).XNCXAD (do NP song song với ADNC song song với XA).

Từ tính chất của các tam giác đồng dạng, ta có thể viết các tỉ số tương ứng:

(1)PNMQ​=PXQX​(1)(2)CBMD​=XBXM​(2)(3)ADNC​=AXNX​(3)

Như vậy, từ các phương trình trên, ta có thể suy ra:

(4)PNMQ​=CBMD​⋅ADNC​(4)

Vậy nên ta thấy rằng PNMQ​=CBMD​⋅ADNC​.

Từ (4), ta thấy rằng MQ=PN khi và chỉ khi MD=NC, CB=AD, tức là ABCD là hình vuông.

Do đó, ta đã chứng minh được rằng MN=PQ khi và chỉ khi ABCD là hình vuông.

mong là đúng:))hehehehehehe

    

21 tháng 4 2017

Bài giải:

Theo hình vẽ, ta có: AB = 2cm, CD = 4cm

Trong tam giác vuông AED, áp dụng định lý Pitago ta được:

AD2 = AE2 + ED2

= 32 + 12 =10

Suy ra AD = 1010cm

Vậy AB = 2cm, CD = 4cm, AD = BC = 1010cm

26 tháng 10 2017

A B C H D

Áp dụng định lí Pitago :

\(AD^2 = AH^2 + DH^2\)

\(= 3^2 + 1^2\)

\(= 10\)

\(\Rightarrow AD=\sqrt{10}\)

Vậy \(AB = 2cm\);\(CD = 4cm\);\(AD=BC=\sqrt{10}\)

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Bài 1:

Vận tốc cano khi dòng nước lặng là: $25-2=23$ (km/h) 

 

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Bài 2:

Đổi 1 giờ 48 phút = 1,8 giờ

Độ dài quãng đường AB: $1,8\times 25=45$ (km) 

Vận tốc ngược dòng là: $25-2,5-2,5=20$ (km/h) 

Cano ngược dòng từ B về A hết:

$45:20=2,25$ giờ = 2 giờ 15 phút.

22 tháng 4 2017

Giải:

∆ADC có OE // OC nên OEDC AEA

OEDC
OEDC
= AEAD

∆BDC có OF // DC nên OFDCOFDC = BFBCBFBC

Mà AB // CD => AEADAEAD = BFBCBFBC(câu b bài 19)

Vậy OEDCOEDC = OFDCOFDC nên OE = OF.

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Bài 1:

a.

$a^3-a^2c+a^2b-abc=a^2(a-c)+ab(a-c)$

$=(a-c)(a^2+ab)=(a-c)a(a+b)=a(a-c)(a+b)$

b.

$(x^2+1)^2-4x^2=(x^2+1)^2-(2x)^2=(x^2+1-2x)(x^2+1+2x)$

$=(x-1)^2(x+1)^2$

c.

$x^2-10x-9y^2+25=(x^2-10x+25)-9y^2$

$=(x-5)^2-(3y)^2=(x-5-3y)(x-5+3y)$

d.

$4x^2-36x+56=4(x^2-9x+14)=4(x^2-2x-7x+14)$

$=4[x(x-2)-7(x-2)]=4(x-2)(x-7)$

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Bài 2:

a. $(3x+4)^2-(3x-1)(3x+1)=49$

$\Leftrightarrow (3x+4)^2-[(3x)^2-1]=49$

$\Leftrightarrow (3x+4)^2-(3x)^2=48$

$\Leftrightarrow (3x+4-3x)(3x+4+3x)=48$

$\Leftrightarrow 4(6x+4)=48$

$\Leftrightarrow 6x+4=12$

$\Leftrightarrow 6x=8$

$\Leftrightarrow x=\frac{4}{3}$

b. $x^2-4x+4=9(x-2)$

$\Leftrightarrow (x-2)^2=9(x-2)$

$\Leftrightarrow (x-2)(x-2-9)=0$

$\Leftrightarrow (x-2)(x-11)=0$

$\Leftrightarrow x-2=0$ hoặc $x-11=0$

$\Leftrightarrow x=2$ hoặc $x=11$

c.

$x^2-25=3x-15$

$\Leftrightarrow (x-5)(x+5)=3(x-5)$

$\Leftrightarrow (x-5)(x+5-3)=0$

$\Leftrightarrow (x-5)(x+2)=0$

$\Leftrightarrow x-5=0$ hoặc $x+2=0$

$\Leftrightarrow x=5$ hoặc $x=-2$

5 tháng 5 2017

Xét tam giác ABC ta có:

ON // AB (gt)

=> \(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(1\right)\)\(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(2\right)\)

Xét tam giác ABD ta có:

OM // AB (gt)

=> \(\dfrac{OM}{AB}=\dfrac{DO}{DB}\left(2\right)\)

Vì AB // CD nên \(\dfrac{DO}{DB}=\dfrac{CO}{CA}\left(3\right)\)

Từ (1), (2) và (3) suy ra:

\(\dfrac{ON}{AB}=\dfrac{OM}{AB}=>OM=ON\)

Vậy OM = ON.

12 tháng 5 2017

Lời giải

a)

Ta có \(\left\{{}\begin{matrix}MD=MB\\NA=NC\end{matrix}\right.\) \(\Rightarrow\)MN//DC

\(\Rightarrow\Delta OMN\approx\Delta ODC\approx OBA\)

Tỷ số đồng dạng

\(\dfrac{OM}{OD}=\dfrac{MN}{DC}=\dfrac{ON}{OC}\)\(\Rightarrow MN=\dfrac{OM}{OD}.DC=\dfrac{1}{4}.5,6=1,4\left(cm\right)\)

\(\dfrac{OM}{OB}=\dfrac{MN}{AB}\Rightarrow AB=\dfrac{OB}{OM}.MN=2MN=2,8\left(cm\right)\)

b)

\(\left\{{}\begin{matrix}CD=4MN\\AB=2MN\end{matrix}\right.\)

\(\Rightarrow\dfrac{CD-AB}{2}=\dfrac{4MN-2MN}{2}=MN\)