Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
x = 1800 – 800 = 1000
y = 1800 – 400 = 1400
b)
x = 700 (đồng vị)
y = 500 (so le trong)
c)
x = 1800 – 900 = 900
y = 1800 – 650 = 1150
Bài giải:
a)
x = 1800 – 800 = 1000
y = 1800 – 400 = 1400
b)
x = 700 (đồng vị)
y = 500 (so le trong)
c)
x = 1800 – 900 = 900
y = 1800 – 650 = 1150
Xét ∆ABD và ∆BDC có:
=> ∆ABD ∽ ∆BDC(trường hợp 3)
=> BD = √(AB.DC) = √(12,5.8,5) = √356,25 => BD = 18,9 cm
Để chứng minh rằng MN=PQ, ta sẽ sử dụng tính chất của các tam giác đồng dạng.
Gọi X là giao điểm của MQ và NP.
Ta có các tam giác đồng dạng sau:
MQX và NPX (do MQ song song với NP, XM song song với PN và góc MXQ và PXN là góc đồng phía nội tiếp giữa hai đoạn thẳng MQ và NP).XMD và XCB (do MQ song song với CB và MD song song với BX).XNC và XAD (do NP song song với AD và NC song song với XA).
Từ tính chất của các tam giác đồng dạng, ta có thể viết các tỉ số tương ứng:
(1)PNMQ=PXQX(1)(2)CBMD=XBXM(2)(3)ADNC=AXNX(3)
Như vậy, từ các phương trình trên, ta có thể suy ra:
(4)PNMQ=CBMD⋅ADNC(4)
Vậy nên ta thấy rằng PNMQ=CBMD⋅ADNC.
Từ (4), ta thấy rằng MQ=PN khi và chỉ khi MD=NC, CB=AD, tức là ABCD là hình vuông.
Do đó, ta đã chứng minh được rằng MN=PQ khi và chỉ khi ABCD là hình vuông.
mong là đúng:))
Bài giải:
Theo hình vẽ, ta có: AB = 2cm, CD = 4cm
Trong tam giác vuông AED, áp dụng định lý Pitago ta được:
AD2 = AE2 + ED2
= 32 + 12 =10
Suy ra AD = √1010cm
Vậy AB = 2cm, CD = 4cm, AD = BC = √1010cm
A B C H D
Áp dụng định lí Pitago :
\(AD^2 = AH^2 + DH^2\)
\(= 3^2 + 1^2\)
\(= 10\)
\(\Rightarrow AD=\sqrt{10}\)
Vậy \(AB = 2cm\);\(CD = 4cm\);\(AD=BC=\sqrt{10}\)
Bài 1:
Vận tốc cano khi dòng nước lặng là: $25-2=23$ (km/h)
Bài 2:
Đổi 1 giờ 48 phút = 1,8 giờ
Độ dài quãng đường AB: $1,8\times 25=45$ (km)
Vận tốc ngược dòng là: $25-2,5-2,5=20$ (km/h)
Cano ngược dòng từ B về A hết:
$45:20=2,25$ giờ = 2 giờ 15 phút.
Giải:
∆ADC có OE // OC nên OEDC AEA
OEDC
OEDC = AEAD
∆BDC có OF // DC nên OFDCOFDC = BFBCBFBC
Mà AB // CD => AEADAEAD = BFBCBFBC(câu b bài 19)
Vậy OEDCOEDC = OFDCOFDC nên OE = OF.
Bài 1:
a.
$a^3-a^2c+a^2b-abc=a^2(a-c)+ab(a-c)$
$=(a-c)(a^2+ab)=(a-c)a(a+b)=a(a-c)(a+b)$
b.
$(x^2+1)^2-4x^2=(x^2+1)^2-(2x)^2=(x^2+1-2x)(x^2+1+2x)$
$=(x-1)^2(x+1)^2$
c.
$x^2-10x-9y^2+25=(x^2-10x+25)-9y^2$
$=(x-5)^2-(3y)^2=(x-5-3y)(x-5+3y)$
d.
$4x^2-36x+56=4(x^2-9x+14)=4(x^2-2x-7x+14)$
$=4[x(x-2)-7(x-2)]=4(x-2)(x-7)$
Bài 2:
a. $(3x+4)^2-(3x-1)(3x+1)=49$
$\Leftrightarrow (3x+4)^2-[(3x)^2-1]=49$
$\Leftrightarrow (3x+4)^2-(3x)^2=48$
$\Leftrightarrow (3x+4-3x)(3x+4+3x)=48$
$\Leftrightarrow 4(6x+4)=48$
$\Leftrightarrow 6x+4=12$
$\Leftrightarrow 6x=8$
$\Leftrightarrow x=\frac{4}{3}$
b. $x^2-4x+4=9(x-2)$
$\Leftrightarrow (x-2)^2=9(x-2)$
$\Leftrightarrow (x-2)(x-2-9)=0$
$\Leftrightarrow (x-2)(x-11)=0$
$\Leftrightarrow x-2=0$ hoặc $x-11=0$
$\Leftrightarrow x=2$ hoặc $x=11$
c.
$x^2-25=3x-15$
$\Leftrightarrow (x-5)(x+5)=3(x-5)$
$\Leftrightarrow (x-5)(x+5-3)=0$
$\Leftrightarrow (x-5)(x+2)=0$
$\Leftrightarrow x-5=0$ hoặc $x+2=0$
$\Leftrightarrow x=5$ hoặc $x=-2$
Xét tam giác ABC ta có:
ON // AB (gt)
=> \(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(1\right)\)\(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(2\right)\)
Xét tam giác ABD ta có:
OM // AB (gt)
=> \(\dfrac{OM}{AB}=\dfrac{DO}{DB}\left(2\right)\)
Vì AB // CD nên \(\dfrac{DO}{DB}=\dfrac{CO}{CA}\left(3\right)\)
Từ (1), (2) và (3) suy ra:
\(\dfrac{ON}{AB}=\dfrac{OM}{AB}=>OM=ON\)
Vậy OM = ON.
Lời giải
a)
Ta có \(\left\{{}\begin{matrix}MD=MB\\NA=NC\end{matrix}\right.\) \(\Rightarrow\)MN//DC
\(\Rightarrow\Delta OMN\approx\Delta ODC\approx OBA\)
Tỷ số đồng dạng
\(\dfrac{OM}{OD}=\dfrac{MN}{DC}=\dfrac{ON}{OC}\)\(\Rightarrow MN=\dfrac{OM}{OD}.DC=\dfrac{1}{4}.5,6=1,4\left(cm\right)\)
\(\dfrac{OM}{OB}=\dfrac{MN}{AB}\Rightarrow AB=\dfrac{OB}{OM}.MN=2MN=2,8\left(cm\right)\)
b)
\(\left\{{}\begin{matrix}CD=4MN\\AB=2MN\end{matrix}\right.\)
\(\Rightarrow\dfrac{CD-AB}{2}=\dfrac{4MN-2MN}{2}=MN\)