K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

k cho mình trước

21 tháng 12 2016

bt k bạn

29 tháng 12 2014

cả bài này đều sử dụng đường trung bình

 

5 tháng 11 2017

A B C D E K F a) Hình thang ABCD có:

E là trung điểm của AD (1)

F là trung điểm của BC

=> EF là đường trung bình của hình thang ABCD

nên EF// CD

=> EK // CD (2)

Từ (1)(2) => KA = KC

b)  * Xét tam giác ACD có:

EA =ED (gt)

KA = KC (cmt)

=> EK là đường trung bình của tam giác ACD

=>EK = 1/2 CD

=>CD = 6 x 2

 CD= 12 cm

* Tương tự chứng minh KF là đường trung bình của tam giác ABC

=> KF =1/2 AB

=>AB = 2 x 2

AB = 4 cm

18 tháng 11 2021

Vì E, F lần lượt là trung điểm của AD và BC nên EF là đường tb trong hình thang ABCD \(\Rightarrow EF=\dfrac{AB+CD}{2}=\dfrac{6+14}{2}=\dfrac{20}{2}=10\left(cm\right)\)

12 tháng 12 2023

a: Xét ΔEAB và ΔECM có

\(\widehat{EAB}=\widehat{ECM}\)(hai góc so le trong, AB//CM)

\(\widehat{AEB}=\widehat{CEM}\)(hai góc đối đỉnh)

Do đó: ΔEAB đồng dạng với ΔECM

=>\(\dfrac{EA}{EC}=\dfrac{EB}{EM}=\dfrac{AB}{CM}\)

=>\(\dfrac{EA}{EC}=\dfrac{AB}{CM}=AB:\dfrac{CD}{2}=2\cdot\dfrac{BA}{CD}\)

b: Xét ΔFAB và ΔFMD có

\(\widehat{FAB}=\widehat{FMD}\)(hai góc so le trong, AB//DM)

\(\widehat{AFB}=\widehat{MFD}\)(hai góc đối đỉnh)

Do đó: ΔFAB đồng dạng với ΔFMD

=>\(\dfrac{FA}{FM}=\dfrac{FB}{FD}=\dfrac{AB}{MD}\)

Ta có: \(\dfrac{FA}{FM}=\dfrac{AB}{MD}\)

\(\dfrac{EB}{EM}=\dfrac{AB}{CM}\)

mà MD=MC

nên \(\dfrac{FA}{FM}=\dfrac{EB}{EM}\)

=>\(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)

Xét ΔMAB có \(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)

nên FE//AB

Ta có: FE//AB

AB//CD

Do đó: FE//CD

c: Xét ΔADM có HF//DM

nên \(\dfrac{HF}{DM}=\dfrac{AF}{AM}\)

Xét ΔBDM có FE//DM

nên \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)

Xét ΔBMC có EG//MC

nên \(\dfrac{EG}{MC}=\dfrac{BE}{BM}\)

mà \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)

và MC=MD

nên FE=EG

Ta có: \(\dfrac{AF}{FM}=\dfrac{BE}{EM}\)

=>\(\dfrac{FM}{FA}=\dfrac{EM}{BE}\)

=>\(\dfrac{FM}{FA}+1=\dfrac{EM}{BE}+1\)

=>\(\dfrac{FM+FA}{FA}=\dfrac{EM+BE}{BE}\)

=>\(\dfrac{AM}{FA}=\dfrac{BM}{BE}\)

=>\(\dfrac{AF}{AM}=\dfrac{BE}{BM}\)

mà \(\dfrac{HF}{DM}=\dfrac{AF}{AM}\) và \(\dfrac{BE}{BM}=\dfrac{FE}{DM}\)

nên HF=FE

mà FE=EG

nên HF=FE=EG

a: Xét ΔEAB và ΔEMD có

góc EAB=góc EMD

góc AEB=góc MED

=>ΔEAB đồng dạng vơi ΔEMD

=>EM/EA=AB/MD=AB/MC

Xet ΔFAB và ΔFCM có

góc FAB=góc FCM

góc AFB=góc CFM

Do đó: ΔFAB đồng dạng với ΔFCM

=>FB/FM=AB/CM

=>FM/FB=CM/AB=DM/AB=ME/EA

=>EF//AB

b: Xet ΔBMC có FN//MC

nên FN/MC=BN/BC

=>FN/MD=AH/AD

Xét ΔADM có HE//DM

nên HE/DM=AH/AD

Xét ΔBDC có EN//DC

nên EN/DC=BN/BC=AH/AD

=>(EF+FN)/(2DM)=AH/AD=HE/DM=FN/MD

=>(EF+FN)/2=HE=FN

=>EF+FN=2FN

=>FN=EF=HE

11 tháng 3 2020

A B C D M E F H N

a, MC // AB  => MC/AB = MF/FB (hệ quả)

MB // AB => BM/AB = ME/EA (hệ quả)

Có BM = CM do M là trung điểm của BC (gt)

=> MF/FB = ME/EA

=> EF // AB

b, có HF // BM => AE/EM = HE/BM (hệ quả)

EF // MC => AE/EM = EF/MC (hệ quả)

BM = MC  (Câu a)

=>  HE = EF (1)

có EF // BM => EF/BM = BF/FM  (hệ quả)

FN // MC => FN/MC = FB/FM (hệ quả)

BM = CM (Câu a)

=> EF = FN và (1)

=> HE = EF = FN

29 tháng 12 2021

\(EF=\dfrac{AB+DC}{2}=7.5\left(cm\right)\)