K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2020

                             A B C D E F

Xét hình thang ABCD có :

AE = ED (gt)

BF = FC (gt)

\(\Rightarrow\)EF là đường trung bình của hình thang ABCD

\(\Rightarrow EF=\frac{AB+CD}{2}\)

\(EF=\frac{4+7}{2}\)

\(EF=\frac{11}{2}\)

\(EF=5,5\left(cm\right)\)

Vậy EF = 5,5cm

7 tháng 5 2020

hjjjj

Gọi d là đường thẳng đi qua A và song song với BC và giả sử d\cap HD=M,d\cap HE=N.

H2-1Vì AH là phân giác của \widehat{DHE} và AH\bot MN nên AM=AN.

Theo định lý Thales, ta có \dfrac{AD}{DB}=\dfrac{AM}{BH},\ \dfrac{CE}{EA}=\dfrac{HC}{AN}.

Từ đó suy ra \dfrac{AD}{DB}\cdot\dfrac{BH}{HC}\cdot\dfrac{CE}{EA}=\dfrac{AM}{BH}\cdot\dfrac{BH}{HC}\cdot\dfrac{HC}{AN}=\dfrac{AM}{AN}=1.

Vậy theo định lý Ceva, các đường thẳng AHBE và CD đồng qu

23 tháng 2 2020

không được

7 tháng 9 2016

 

A B C D O

1. Xét \(\Delta ABD\) và \(\Delta BAC\) có:

       AB chung

       AD = BC ( theo tính chất của hình thang cân)

        BD = AC ( theo t/c của hình thang cân )

=> \(\Delta ABD=\Delta BAC\left(c.c.c\right)\)

=> Góc DBA = CAB

=> Tam giác OAB cân tại O 

Vậy OA=OB

 

7 tháng 9 2016

bạn trả lời sai rồi 

Đề bài đâu

where is the cái đề bài

9 tháng 5 2018

Tam giác AMB đồng dạng với tam giác BMN ( Tự chứng minh )

Suy ra \(\frac{AM}{BM}=\frac{AD}{BN}\Rightarrow AM.BN=AD.BM\)

b) Ta chứng minh tam giác ADM bằng tam giác CDK

Rồi suy ra tam giác DMK cân

Mà DM vuông góc với DK

Nên tam giác DMK vuông cân