Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: S hình thang ABCD là : \(\frac{\left(AB+CD\right)\cdot h}{2}=450\Rightarrow3CD\cdot h=900\Rightarrow h=\frac{900}{3CD}=\frac{300}{CD}\)
Mà hình thang ABCD và tam giác ABC có cùng đường cao hạ từ C
Nên diện tích tam giác ABC là: \(\frac{AB\cdot h}{2}=\frac{2CD\cdot h}{2}=\frac{2CD\cdot\frac{300}{CD}}{2}=300\left(cm^2\right)\)
b) hình tứ giác có diện tích nhỏ nhất là hình thang CMAN (vì CM=CD/2 và AN=AB/2)
Diện tích tứ giác đó là: \(\frac{\left(CM+AN\right)\cdot h}{2}=\frac{1,5CD\cdot\frac{300}{CD}}{2}=225\left(cm^2\right)\)
c)IM<IN (sr nha mình bận một chút)
có gì k cho mình nha
ta có MC cắt BN tại K nên K là trọng tâm tam giác ABC
=> S(BAK)=S(AKC) mà S(KAB)=42dm2
=> S(AKC)=42dm^2
A B C M N I
a) tam giác ABN và tam giác ABC chung chiều cao hạ từ B xuống AC ; đáy AN = 1/3 đáy AC
=> S(ABN) = 1/3 xS(ABC)
Tam giác ACM và ACB có chung chiều cao hạ từ C xuống AB ; đáy AM = 1/3 đáy AB
=> S(AMC) = 1/3 x S(ABC)
=> S(AMC) = S(ANB) Vì cùng bằng 1/3 S(ABC)
b) Ta có: S(AMC) = S(CNI) + S(AMIN)
S(ANB) = S(BMI) + S(AMIN)
Mà S(AMC) = S(ANB) nên S(CNI) = S(BMI)
c) Nối A với I:
Ta có: S(AMI) = 1/2 S(BMI) (Vì đáy AM = 1/2 đáy BM ; chung chiều cao hạ từ I xuống AB)
S(ANI) = 1/2 S(CNI)
Mà S(CNI) = S(BMI) nên S(AMI) = S(ANI) = 90 : 2 = 45 cm2
=> S(AIB) = 3 x S(AMI) = 3 x 45 = 135 cm2
=>S(ABN) = S(AIB) + S(AIN) = 135 + 45 = 180 cm2
=> S(ABC) = 3 x S(ABN) = 3 x 180 = 540 cm2