Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Từ ĐKĐB dễ thấy các tứ giác ABID,ABCK là hình bình hành do có các cặp cạnh đối song song với nhau
\(\Rightarrow AB=DI;AB=CK\Rightarrow DI=CK\Rightarrow DK=CI\)
Áp dụng định lý Ta-lét:
\(AB||DK\Rightarrow\frac{DE}{EB}=\frac{DK}{AB}\)
\(AB||CI\Rightarrow\frac{IF}{FB}=\frac{CI}{AB}\)
Maf \(CI=DK\)(cmt)
\(\Rightarrow\frac{DE}{EB}=\frac{IF}{FB}\)Theo định lý Ta-let đảo suy ra EF\(||\)CD
b)Từ các đường thẳng song song, và DI=CK=AB, áp dụng định lý Ta-let:
\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CE-CK}{AB}=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)
\(\Rightarrow AB^2=EF.CD\)( đpcm )
A B C D E K F I N
\(\text{a) Ta có : }AB//CD\left(gt\right)\\ \Rightarrow AB//DI\left(I\in CD\right)\\ Mà\text{ }AD//BI\left(gt\right)\\ \Rightarrow Tứ\text{ }giác\text{ }ABDI\text{ }là\text{ }hình\text{ }bình\text{ }hành\left(Dấu\text{ }hiệu\text{ }nhận\text{ }biết\right)\\ \Rightarrow AB=DI\left(2\text{ }cạnh\text{ }đối\text{ }của\text{ }hình\text{ }bình\text{ }hành\right)\left(1\right)\)
\(\text{Lại có: }AB//CD\left(gt\right)\\ \Rightarrow AB//CK\left(K\in CD\right)\\ Mà\text{ }AK//BC\left(gt\right)\\ \Rightarrow Tứ\text{ }giác\text{ }ABCK\text{ }là\text{ }hình\text{ }bình\text{ }hành\left(Dấu\text{ }hiệu\text{ }nhận\text{ }biết\right)\\ \Rightarrow AB=CK\left(2\text{ }cạnh\text{ }đối\text{ }của\text{ }hình\text{ }bình\text{ }hành\right)\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow DI=CK\)
\(\Rightarrow DI+IK=CK+KI\\ \Rightarrow DK=CI\)
b) Từ \(F\) kẻ \(FN//CD\)
\(\Rightarrow FN//DI\left(I\in CD\right)\\ Mà\text{ }AD//BI\left(gt\right)\\ \Rightarrow ND//FI\left(N\in AD;F\in BI\right)\\ \Rightarrow Tứ\text{ }giác\text{ }FNDI\text{ }là\text{ }hình\text{ }bình\text{ }hành\left(Dấu\text{ }hiệu\text{ }nhận\text{ }biết\right)\\ \Rightarrow\widehat{NDI}=\widehat{NFI}\left(các\text{ }góc\text{ }đối\text{ }của\text{ }hình\text{ }bình\text{ }hành\right)\left(3\right)\)
\(\text{Lại có: }ND//FI\left(Chứng\text{ }minh\text{ }trên\right)\\ \Rightarrow\widehat{NDI}=\widehat{FIK}\left(2\text{ }góc\text{ }đồng\text{ }vị\right)\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\Rightarrow\widehat{NFI}=\widehat{FIK}\)
Mà \(\widehat{NFI}\) và \(\widehat{FIK}\) là 2 góc so le trong
\(\Rightarrow EF//CD\)