Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác \(ADC\) có \(OF//DC\), theo định lí Thales ta có:
\(\frac{{AF}}{{AD}} = \frac{{AO}}{{AC}}\) (1)
Xét tam giác \(ABC\) có \(OE//BC\), theo định lí Thales ta có:
\(\frac{{AE}}{{AB}} = \frac{{AO}}{{AC}}\) (2)
Từ (1) và (2) suy ra, \(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)
Xét tam giác \(ABD\) có:
\(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)
Theo định lí Thales đảo suy ra \(EF//BD\).
b) Xét tam giác \(ADC\) có \(OH//AD\), theo định lí Thales ta có:
\(\frac{{CH}}{{CD}} = \frac{{CO}}{{AC}}\) (3)
Xét tam giác \(ABC\) có \(OG//AB\), theo định lí Thales ta có:
\(\frac{{CG}}{{BC}} = \frac{{CO}}{{AC}}\) (4)
Từ (3) và (4) suy ra, \(\frac{{CH}}{{CD}} = \frac{{CG}}{{BC}}\)
Theo định lí Thales đảo suy ra \(GH//BD\).
Xét tam giác \(BCD\) có \(GH//BD\), theo định lí Thales ta có:
\(\frac{{CH}}{{DH}} = \frac{{CG}}{{BG}} \Rightarrow CH.BG = DH.CG\) (điều phải chứng minh).
a: Xét ΔADC có OF//DC
nên AF/AD=AO/AC
Xét ΔABC có EO//BC
nên AE/AB=AO/AC
=>AF/AD=AE/AB
=>EF//BD
b: OH//AD
=>CH/CD=CO/CA
OG//AB
=>CG/BC=CO/CA
=>CG/BC=CH/CD
=>GH//BD
=>CH/DH=CG/BG
=>CH*BG=DH*CG
a)
Từ ĐKĐB dễ thấy các tứ giác ABID,ABCK là hình bình hành do có các cặp cạnh đối song song với nhau
\(\Rightarrow AB=DI;AB=CK\Rightarrow DI=CK\Rightarrow DK=CI\)
Áp dụng định lý Ta-lét:
\(AB||DK\Rightarrow\frac{DE}{EB}=\frac{DK}{AB}\)
\(AB||CI\Rightarrow\frac{IF}{FB}=\frac{CI}{AB}\)
Maf \(CI=DK\)(cmt)
\(\Rightarrow\frac{DE}{EB}=\frac{IF}{FB}\)Theo định lý Ta-let đảo suy ra EF\(||\)CD
b)Từ các đường thẳng song song, và DI=CK=AB, áp dụng định lý Ta-let:
\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CE-CK}{AB}=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)
\(\Rightarrow AB^2=EF.CD\)( đpcm )
Gọi H là giao điểm của AC và BD
Vì AF//BC
Áp dụng hệ quả Talet :
=> HF/HB = AH/HC
Ta có : HE//HA = HB/HD
Mà AB//CD
=> HB/HA = HA/HC
=> HE /HA = HF/HB
=> EF//AB
=> EDCF là hình thang
Vì ABCD là hình thang cân
=> ADC = BCD
AD = BC
Xét ∆ACD và ∆BDC ta có :
DC chung
AD = BC
ADC = BCD
=> ∆ACD = ∆BDC (c.g.c)
=> BDC = ACD
=> EDCF là hình thang cân (dpcm)
b) Kéo dài EF sao cho lần lượt cắt AD tại G và BC tại O
Vì EF//DC (cmt)
=> GO//DC
Mà DC//AB
=> AB//GO//DC
=> GO là đường trung bình hình thang ABCD
=> GO = \(\frac{5\:+\:10}{2}=\:7,5\)cm
Mà GO là đường trung bình hình thang
=> G là trung điểm AD ; O là trung điểm BC
Vì GO//AB
=> GE//AB
Mà G là trung điểm AD
=> GE là đường trung bình ∆ABD
=> GE = \(\frac{5}{2}\)= 3,5 cm
Vì GO //AB
=> FO//AB
Mà O là trung điểm BC
=> FO là đường trung bình ∆ABC
=> FO = \(\frac{5}{2}=\:3,5\)cm
=> EF = 7,5 - 3,5 - 3,5 = 0,5cm