K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

A D C B F M N E

a) AD//BC 

=> ^DAE = ^AEB ( so le trong)

mà ^BAE = ^EAD  ( AE là phân giác ^BAD)

=> ^BAE =^ AEB 

=> Tam giác BAE cân tại B

=> BA=BE

b) BF là paah giác ^ABE của tam giác cân BAE

=> BF là đường cao, đường trung tuyến của tam giác BAE

=> BF vuông góc AE

và F là trung điểm AE hay FA=FE

c) M là trung điểm AB, F là trung điểm AE 

=> MF là đường trung bình của tam giác ABE 

=> MF//BE hay MF//BC (1)

M là trung điểm AB, N là trung điểm CD 

=> MN là đường trung bình của hình thnag ABCD

=> MN//BC (2)

Từ (1); (2)

=> M. N, F thẳng hàng

24 tháng 7 2018

bạn đã giải đcj bài này chưa vậy

30 tháng 8 2019

Bạn ơi! Nếu bạn giải được bài này rồi thì đăng lên cho mọi người tham khảo với. :)))))

a: Xét ΔABE có \(\widehat{BAE}=\widehat{BEA}\left(=\widehat{DAE}\right)\)

nên ΔABE cân tại B

hay BA=BE

b: Ta có: ΔBAE cân tại B

mà BF là đường phân giác ứng với cạnh AC

nên BF là đường cao ứng với cạnh AC

30 tháng 8 2019

Câu hỏi của Hồ Phong Thư - Toán lớp 8 - Học toán với OnlineMath

3 tháng 8 2015

a, BAE=EAD( tia phân giác ) (1)

AD//BC -->DAE=AEB (2)

(1)và(2)-->BAE=AEB -->tam giác BAE cân tại B -->BA=BE

b,tam giác BAE cân -->đường phân giác BF đồng thời là đường trung tuyến --.AF=FE

(mk ko hiểu đề bài cm vuông góc)

c,MA=MB(M là trung điểm AB), AF=FE(cm câu b) -->MF là đường trung bình tam giác ABE -->MF//BE hay MF//BC(3)

AF=FE,DN=NC(N là trung điểm DC)-->FN là đường trung bình của ADCE -->FN//EC hay FN//BC(4)

(3)(4) theo tiên đề ơclit --> N,F,M thẳng hàng.

30 tháng 8 2019

Em tham khảo nhé!

Câu hỏi của Hồ Phong Thư - Toán lớp 8 - Học toán với OnlineMath

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

19 tháng 6 2018

Vì AE là tia phân giác của góc BAD

➡️Góc BAE = góc EAD = góc BAD ÷ 2 (1)

Xét hình thang ABCD có BC // AD

➡️Góc AEB = góc EAD ( 2 góc so le trong) (2)

Từ (1) và (2) ➡️góc BAE = góc AEB

➡️∆ ABE cân tại B 

➡️BA = BE (đpcm)

b, Vì ∆ ABE cân tại B

➡️BF là tia phân giác đồng thời là đg cao

➡️BF vuông góc với AE

Ta có BF là tia phân giác đồng thời là đg trung tuyến

➡️AF = EF = AE ÷ 2 = 8 ÷ 2 = 4 (cm)

Xét ∆ ABF vuông tại F 

➡️AF2 + BF2 = AB2 ( pitago)

➡️BF2 = AB2 - AF2

➡️BF2 = 52 - 42 

➡️BF = 3 (cm)

Hok tốt nhé~

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0