Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEAB và ΔEMD có
góc EAB=góc EMD
góc AEB=góc MED
=>ΔEAB đồng dạng vơi ΔEMD
=>EM/EA=AB/MD=AB/MC
Xet ΔFAB và ΔFCM có
góc FAB=góc FCM
góc AFB=góc CFM
Do đó: ΔFAB đồng dạng với ΔFCM
=>FB/FM=AB/CM
=>FM/FB=CM/AB=DM/AB=ME/EA
=>EF//AB
b: Xet ΔBMC có FN//MC
nên FN/MC=BN/BC
=>FN/MD=AH/AD
Xét ΔADM có HE//DM
nên HE/DM=AH/AD
Xét ΔBDC có EN//DC
nên EN/DC=BN/BC=AH/AD
=>(EF+FN)/(2DM)=AH/AD=HE/DM=FN/MD
=>(EF+FN)/2=HE=FN
=>EF+FN=2FN
=>FN=EF=HE
có m là trđ của cd rồi lại còn ef cắt bc tại m
a, xét tam giác DEM có AB // DM (gt) => ME/AE = DM/AB (ddl)
xét tam giác MFC có MC // AB (gt) => MF/FB = CM/AB (đl)
có DM = CM do M là trung điểm của CD (gt)
=> ME/AE = MF/FB xét tam giác ABM
=> EF // AB (đl)
b, gọi EF cắt AD;BC lần lượt tại P và Q
xét tam giác ABD có PE // AB => PE/AB = DE/DB (đl)
xét tam giác DEM có DM // AB => DE/DB = ME/MA (đl)
xét tam giác ABM có EF // AB => EF/AB = ME/MA (đl)
=> PE/AB = EF/AB
=> PE = EF
tương tự cm được FQ = EF
=> PE = EF = FQ
c, Xét tam giác DAB có PE // AB => PE/AB = DP/DA (đl)
xét tam giác ADM có PE // DM => PE/DM = AP/AD (đl)
=> PE/AB + PE/DM = DP/AD + AP/AD
=> PE(1/AB + 1/DM) = 1 (1)
xét tam giác AMB có EF // AB => EF/AB = MF/MB (đl)
xét tam giác BDM có EF // DM => EF/DM = BF/BM (đl)
=> EF/AB + EF/DM = MF/MB + BF/BM
=> EF(1/AB + 1/DM) = 1 (2)
xét tam giác ABC có FQ // AB => FQ/AB = CQ/BC (đl)
xét tam giác BMC có FQ // MC => FQ/MC = BQ/BC (đl)
=> FQ/AB + FQ/MC = CQ/BC + BQ/BC
có MC = DM (câu a)
=> FQ(1/AB + 1/DM) = 1 (3)
(1)(2)(3) => (1/AB + 1/DM)(PE + EF + FQ) = 3
=> PQ(1/AB + 1/DM) = 3
DM = 1/2 CD = 6
đến đây thay vào là ok
#Hình bạn tự vẽ nhé!!!#
a)Ta có: AM=DM(M là trung điểm của AD); BN=CN(N là trung điểm của BC)
\(\Rightarrow\)MN là đường trung bình của hình thang ABCD
\(\Rightarrow MN//CD\left(1\right)\)
Ta lại có:AM=DM(cmt); AE=CE(E là trung điểm của AC)
\(\Rightarrow\)ME là đường trung bình của \(\Delta ACD\)
\(\Rightarrow ME//CD\left(2\right)\)
Từ(1) và (2), suy ra:\(MN\equiv ME\)(theo tiên đề Ơ-clit)
\(\Rightarrow M,N,E\) thẳng hàng (3)
Vì BN=CN(cmt); BF=DF(F là trung điểm của BD)
\(\Rightarrow\)NF là đường trung bình của \(\Delta BCD\)
\(\Rightarrow NF//CD\left(4\right)\)
Từ(1) và (4), suy ra:\(MN\equiv NF\)(theo tiên đề Ơ-clit)
\(\Rightarrow M,N,F\) thẳng hàng(5)
Từ (2) và (5), suy ra:M,N,P,Q thẳng hàng
A B C D M N F E
a) +)Xét hình thang ABCD có: M là trug điểm AD, N là trung điểm BC
=> MN là đường trung bình hình thang ABCD
=> MN//AB//DC (1)
+) xét tam giác ADC có: M là trung điểm AD; E là trung điểm EC
=> ME là đường trung bình tam giác ADC
=> ME//=1/2 DC (2)
+) Xét tam giác ADB có M là trung điểm AD, F là trung điểm DB
=> MF là đường trung bình của tam giác ADB
=> MF//=1/2 AB (3)
Từ (1), (2), (3) suy ra MN, ME, MF cùng nằm trên một đường thẳng
=> M, N, E, F thẳng hàng
b)
Ta có: \(EF=ME-MF=\frac{1}{2}DC-\frac{1}{2}AB=\frac{DC-AB}{2}\)