K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2016

a / hình bình hành 

b/ AC=BD ; AB>CD ; AB<AC<CD;AB<BD<CD

c/hình vuông

10 tháng 2 2016

(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD  (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD                                 (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC                                                        (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN 
=> MNPQ là hình thoi

 

19 tháng 6 2015

(Hình thì bạn tự vẽ nha)

a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD  (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành

b) Theo a), ta có: MQ = 1/2 AD                                 (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC                                                        (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN 
=> MNPQ là hình thoi

9 tháng 12 2016

phần c đâu

19 tháng 12 2017

A B C D M N P Q

Tam giác BCD có :

BN = NC ( gt )

DP = PC ( gt )

\(\Rightarrow\)NP là đường trung bình tam giác BCD ( 1 )

Tam giác ADB có :

AQ = QD ( gt )

AM = MB ( gt )

\(\Rightarrow\)QM là đường trung bình tam giác ADB ( 2 )

Từ ( 1 ) , ( 2 ) suy ra NP = QM , NP // QM

\(\Rightarrow\)MNEF là hình bình hành ( đến đây bạn tự chứng minh tiếp hình thoi )

c) Để MNPQ là hình vuông thì ta chứng minh ABCD là hình thang cân có 2 đường chéo vuông góc với nhau 

10 tháng 12 2016

tgiác ABC có MN là đường trung bình => MN // AC và MN = AC/2
tgiác DAC có PQ là đường trung bình => PQ // AC và PQ = AC/2
vậy: MN // PQ và MN = PQ => MNPQ là hình bình hành

mặt khác xét tương tự cho hai tgiác ABD và CBD ta cũng có:
NP // BD và NP = BD/2
do giả thiết AC_|_BD => AC_|_NP mà MN // AC => MN_|_NP

tóm lại MNPQ là hình chữ nhật (hbh có một góc vuông)

b) MNPQ là hình vuông <=> MN = NP <=> AC/2 = BD/2 <=> AC = BD
vậy điều kiện là: tứ giác ABCD có hai đường chéo vuông góc và bằng nhau
c, Vỳ Mn là đườq trung bình của tam giác ABC nên MN= \(\frac{1}{2}\) AC= 3cm

QM là đường trung bình của tam giác ABD nên QM = \(\frac{1}{2}\) BD = 4cm

Mà MNPQ là hình chữ nhật nên diện tích ABCD = ( MN+PQ).2= (3.4):2 = 6cm

11 tháng 12 2016

Bạn ơi lẽ ra chỗ diện tích hcn là phải bằng = 3 . 4 = 12cm chứ nhỉ bạn

11 tháng 12 2016

a,

Xét ABD, ta có :

MA = MB (gt)

QA = QD (gt)

=> MQ là đường trung bình.

=> MQ // BD và MQ = BD : 2 (1)

Cmtt, ta được :

NP // BD và NP = BD : 2 (2)

NM // AC và NM = AC : 2 (3)

Từ (1) và (2) : MQ // NP và MQ = PP

=> Tứ giác MNPQ làhình bình hành.

ta có :

AC = BD ( hai đường chéo hình thang cân ABCD)

NM = AC : 2 (cmt)

MQ = BD : 2 (cmt)

=> NM = MQ

Xét hình bình hành MNPQ, ta có :

NM = MQ (cmt)

=> hình bình hành MNPQ là hình thoi.

b , Nếu AC \bot BD

NM // AC (cmt)

NP // BD (cmt)

=> NM \bot NP tại N

Hay \widehat{MNP} =90^0

Xét hình thoi MNPQ , ta có : \widehat{MNP} =90^0 (cmt)

=> hình thoi MNPQ là hình vuông.

tick nha bn

19 tháng 12 2018

xem tren mang

18 tháng 8 2018

Hình thang ABCD là hình thang cân có hai góc kề một đáy đều bằng 45 0 thì MNPQ là hình vuông.

22 tháng 2 2018

A M B D Q N C P

a) \(\Delta ABC\)có : 

MA = MB ( gt )

NB = NC ( gt )

=> MN là đường trung bình của \(\Delta ABC\)

=> \(MN//AC\)\(;\)\(MN=\frac{1}{2}AC\)

CMTT : \(PQ//AC\)\(;\)\(PQ=\frac{1}{2}AC\)

=> MN // PQ ; MN = PQ .

=> Tứ giác MNPQ là hình bình hành .

b) Theo câu a) , Ta có : 

MQ // BD và \(MQ=\frac{1}{2}BD\) ; NP // BD và \(NP=\frac{1}{2}BD\)

+) Hình bình hành MNPQ là hình thoi 

=> MN = MQ <=> AC = BD ( Vì \(MN=\frac{1}{2}AC\)\(MQ=\frac{1}{2}BD\)

=> ABCD là hình thang cân .

+) Hình bình hành MNPQ là hình chữ nhật 

\(\Rightarrow\) \(\widehat{NMQ}=90^0\)\(\Leftrightarrow\)\(MN\perp MQ\)\(\Leftrightarrow\)\(AC\perp BD\)( Vì MN // AC ; MQ // BD ) 

=> Hình thang thang ABCD có 2 đường chéo vuông góc với nhau .

+) Hình bình hành MNPQ là hình vuông 

\(\Rightarrow\)\(MN=MQ\)\(;\)\(\widehat{NMQ}=90^0\) \(\Leftrightarrow\)\(AC=BC\)và \(AC\perp BD\)

=> ABCD là hình thang cân có 2 đường chéo vuông góc với nhau . 

5 tháng 5 2017

MNPQ là hình thoi vì là hình bình hành có hai cạnh kề bằng nhau.