Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Do CD//AB, DM//BD nên ta dễ thấy: tam giác DMC đồng dạng với tam giác BCA(g.g)
➞ MCCA=CDAB=AFABMCCA=CDAB=AFAB ( vì ADCF là hình bình hành nên CD=AF) (1)
Ta lại có: FP//AC nên:CPCB=AFABCPCB=AFAB (2)
Từ (1),(2) ta có: CMCA=CPCBCMCA=CPCB
Theo định lí Talet đảo ta có: MP//AB
b, Gọi N, N' là giao điểm của MP,DB với CF
Ta có:CNCF=CMCA=CDABCNCF=CMCA=CDAB ( theo phần a,)
CN′N′F=CDFBCN′N′F=CDFBsuy ra AN′CF=CD(FB+CD)=CDABAN′CF=CD(FB+CD)=CDAB ( vì CD=AF)
Vậy CN=CN' nên N' trùng N
Từ đó ta suy ra: MP,CF,DB đồng quy
a)
Từ ĐKĐB dễ thấy các tứ giác ABID,ABCK là hình bình hành do có các cặp cạnh đối song song với nhau
\(\Rightarrow AB=DI;AB=CK\Rightarrow DI=CK\Rightarrow DK=CI\)
Áp dụng định lý Ta-lét:
\(AB||DK\Rightarrow\frac{DE}{EB}=\frac{DK}{AB}\)
\(AB||CI\Rightarrow\frac{IF}{FB}=\frac{CI}{AB}\)
Maf \(CI=DK\)(cmt)
\(\Rightarrow\frac{DE}{EB}=\frac{IF}{FB}\)Theo định lý Ta-let đảo suy ra EF\(||\)CD
b)Từ các đường thẳng song song, và DI=CK=AB, áp dụng định lý Ta-let:
\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CE-CK}{AB}=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)
\(\Rightarrow AB^2=EF.CD\)( đpcm )
a) Do CD // AB, DM // BD nên ta dễ thấy : \(\Delta DMC\)đồng dạng với \(\Delta MCA\left(g.g\right)\)
\(\Rightarrow\frac{MC}{CA}=\frac{CD}{AB}=\frac{AF}{AB}\)( vì ADCF là hình bình hành nên CD = AF ) (1)
Lại có : FP // AC nên : \(\frac{CP}{CB}=\frac{AF}{AB}\left(2\right)\)
Từ (1) và (2) => \(\frac{CM}{CA}=\frac{CP}{CB}\)
Theo định lí Ta-let đảo, ta có : MP // AB
b) Gọi N và N' là giao điểm MP,DB với CF
Ta có : \(\frac{CN}{CF}=\frac{CM}{CA}=\frac{CD}{AB}\)(ở phần a)
\(\frac{CN'}{N'F}=\frac{CD}{FB}\Rightarrow\frac{AN'}{CF}=\frac{CD}{\left(FB+CD\right)}=\frac{CD}{AB}\)( vì CD = AF )
Vậy CN = CN' nên N' trùng N
Từ đó, ta suy ra được : MP, CF, DB đồng quy