Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M N P Q O
Áp dụng hệ quả của định lí Ta-lét,ta có :
\(\Delta AMO\)có NC // AM\(\Rightarrow\frac{NC}{MA}=\frac{ON}{OM}\left(1\right)\)
\(\Delta MBO\)có ND // MB\(\Rightarrow\frac{ND}{MB}=\frac{ON}{OM}\left(2\right)\)
\(\Delta ADB\)có OP // AB\(\Rightarrow\frac{OP}{AB}=\frac{OD}{DB}\left(3\right)\)
\(\Delta ACB\)có OQ // AB\(\Rightarrow\frac{OQ}{AB}=\frac{OC}{AC}\left(4\right)\)
\(\Delta ODC\)có AB // CD\(\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\left(5\right)\)
Từ (1) và (2),ta có\(\frac{NC}{MA}=\frac{ND}{MB}\Rightarrow\frac{NC}{ND}=\frac{MA}{MB}=k\Rightarrow\frac{ND}{NC}=\frac{1}{k}\)
Từ (3),(4) và (5),ta có\(\frac{OP}{AB}=\frac{OQ}{AB}\)=> OP = OQ => O là trung điểm PQ
Tham khảo bài này nha!
Hình thang ABCD (AB//CD) có AC va BD cắt nhau tại O , AD và BC cắt nhau tại K . Chứng minh rằng OK đi qua trun?
Tứ giác ABCD là hình thang nên:AB//CD.
Gọi M, N lần lượt là giao điểm của KO với AB,CD.
Áp dụng định lý talet ta có:
AM/DN=MB/NC(=KM/KN)
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC.
=AO/OC=AM/NC.
Vậy AM/DN=AM/NC hay DN=NC.
tương tự MB=MA.
hay ta có OK đi qua trung điểm của AB và CD.
: Tứ giác ABCD là hình thang nên:AB//CD.
Gọi M, N lần lượt là giao điểm của KO với AB,CD.
Áp dụng định lý talet ta có:
AM/DN=MB/NC(=KM/KN)
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC.
=AO/OC=AM/NC.
Vậy AM/DN=AM/NC hay DN=NC.
tương tự MB=MA.
ta có OK đi qua trung điểm của AB và CD.
Sửa đề: Hình thang \(ABCD\left(BC//AD\right)\) Ý 2: \(MN//AD//BC\)
Hình tự vẽ nha <3
Gọi \(E,F\) lần lượt là trung điểm của các cạnh \(BC;AD\)
Gọi \(H\) là giao điểm của \(PE\) và \(AD\) và \(K\) là giao điểm của \(PK\) và \(BC\)
Xét \(\Delta MBE\) có: \(BE//AH\)
\(\Rightarrow\frac{MB}{MA}=\frac{BE}{HA}\)
Lại có: \(\frac{EC}{AH}=\frac{BE}{HA}\Rightarrow\frac{MB}{MA}=\frac{EC}{AH}\)
Chứng minh tương tự ta có: \(\frac{NC}{ND}=\frac{CK}{AF}\)
Xét \(\Delta PAH\) có: \(EC//AH\)
\(\Rightarrow\frac{PC}{PA}=\frac{EC}{AH}\)
Xét \(\Delta PAF\) có: \(CK//AF\)
\(\Rightarrow\frac{PC}{PA}=\frac{CK}{AF}\Rightarrow\frac{MB}{MA}=\frac{NC}{ND}\Rightarrow MN//AD//BC\left(đpcm\right)\)
A B C D O M N K a) Vì ABCD là hình thang
=> AB//DC
Xét ΔDKN có AM//DN ( AB//DC )
=>\(\dfrac{AM}{DN}=\dfrac{KM}{KN}\) (1) (theo hệ quả ta lét )
Xét Δ NKC có BM//NC (AB//DC )
=>\(\dfrac{MB}{NC}=\dfrac{KM}{KN}\) (2) (theo hệ quả ta lét )
từ (1) và (2)
=>\(\dfrac{AM}{DN}=\dfrac{MB}{NC}\)(đpcm)
b)MB//DN(AB//DC )
=>\(\dfrac{MB}{ND}=\dfrac{MO}{NO}\) (3) (theo đl ta lét)
AM//NC
=>\(\dfrac{AM}{NC}=\dfrac{MO}{NO}\) (4) (theo đl ta lét)
từ (3) và (4)
=>\(\dfrac{AM}{NC}=\dfrac{BM}{ND}\) (đpcm)
c) ta có
\(\dfrac{MA}{ND}=\dfrac{MB}{NC}\) (theo a)
\(\dfrac{MA}{NC}=\dfrac{MB}{ND}\) (theo b)
=> MA=MB ,NC=ND (đpcm)
a: Xét ΔKND có AM//ND
nên KM/KN=AM/ND
Xét ΔKNC có MB//NC
nên MB/NC=KM/KN
=>AM/ND=KM/KN
b: Xét ΔMBO và ΔNDO có
góc MBO=góc NDO
góc MOB=góc NOD
Do đó: ΔMBO đồng dạng với ΔNDO
=>MB/ND=MO/NO
Xét ΔMAO và ΔNCO có
góc MAO=góc NCO
góc MOA=góc NOC
Do đó: ΔMAO đồng dạng với ΔNCO
=>MA/NC=MO/NO=MB/ND
tick rồi mình giải chi tiết cho
bài nk mình pk làm r, các bạn khỏi cần tick j hết