K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
25 tháng 10 2016
Nối các đỉnh của ngôi sao lại ta có hình ngũ giác đều nội tiếp đường tròn tâm O.
Vì là ngũ giác đều nội tiếp đường tròn tâm O nên ta có khoản cách từ O đến các đỉnh là như nhau và bằng R.
Góc tạo bởi hai đỉnh liên tiếp là
\(\frac{360}{5}=\:72°\)
Gọi khoản cách giữa 2 đỉnh liên tiếp là a thì ta có
\(a^2=R^2+R^2-2R^2\cos72°\)
Tới đây bạn tự bấm máy tính đi nhé
23 tháng 2 2023
a: Xét tứ giác OHCK có
góc OHC+góc OKC=180 độ
=>OHCK là tứ giác nội tiếp
b: Vì góc BFC=góc BKC=90 độ
nên BFKC nội tiếp đường tròn đường kính BC
N O A B
Gọi các điểm của hình sao như hình trên.
Theo đề ta có: \(AB=a\)
Mà \(AN=NB\)và \(AN+NB=AB\)
Nên \(AN=NB=\frac{AB}{2}=\frac{a}{2}\)
Ta lại có: \(NOB=\frac{1}{2}B=\frac{1}{2}.36^o=18^o\)
Xét tam giác NBO vuông tại N
\(NB=OB.\cos18^o\Rightarrow OB=\frac{NB}{\cos18^o}=\frac{a}{2\cos18^o}\)
Vậy bán kính đường tròn ngoại tiếp là \(R=\frac{a}{2\cos18^o}\)