Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là hình chiếu vuông góc của A' trên mặt phẳng (ABCD)
Kẻ HN vuông góc với AB tại N, HM vuông góc với AD tại M
Ta cần tìm chiều cao h=A'H của hình hộp
Dễ dàng chứng minh \(\widehat{A'NH}=60^0\) và \(\widehat{A'MH}=45^0\)
Xét tam giác vuông NHA' và MHB' có
\(NH=\frac{HA'}{tan\widehat{HNA'}}=\frac{h}{\sqrt{3}}\) và \(MH=\frac{HA'}{tan\widehat{HMA'}}=h\)
Xét hình vuông AMHN có \(AH=\sqrt{HN^2+HM^2}=\frac{2h}{\sqrt{3}}\)
Xét tam giác vuông AHA' có \(AH^2+A'H^2=A'A^2\Leftrightarrow h^2+\frac{4}{3}h^2=1\Leftrightarrow h=\sqrt{\frac{3}{7}}\)
Vậy thể tích hình hộp là: \(V=h.\sqrt{3}.\sqrt{7}=\sqrt{\frac{3}{7}}.\sqrt{3}\sqrt{7}=3\)
Gọi O là giao điểm của AC và BD \(\Rightarrow A_1O\perp\left(ABCD\right)\)
Gọi E là trung điểm của AD \(\Rightarrow\begin{cases}OE\perp AD\\A_1E\perp AD\end{cases}\)
Suy ra \(\widehat{A_1EO}\) là góc giữa 2 mặt phẳng \(\left(ADD_1A_1\right)\) và \(\left(ABCD\right)\) \(\Rightarrow\widehat{A_1EO}=60^o\)
Suy ra : \(A_1O=OE.\tan\widehat{A_1EO}=\frac{AB}{2}\tan\widehat{A_1EO}=\frac{a\sqrt{3}}{2}\)
Diện tích đáy \(S_{ABCD}=AB.AD=a^2\sqrt{3}\)
Thể tích \(V_{ABCD.A'B'C'D'}=S_{ABCD}.A_1O=\frac{3a^2}{2}\)
Ta có : \(B_1C||A_1D\)\(\Rightarrow B_1C||\left(A_1CD\right)\)
\(\Rightarrow d\left(B_1,\right)\left(A_1BD\right)=d\left(C,\left(A_1BD\right)\right)=CH\)
\(\Rightarrow d\left(B_1,\right)\left(A_1BD\right)=CH=\frac{CD.CB}{\sqrt{CD^2+CB^2}}=\frac{a\sqrt{3}}{2}\)
mình không hiểu rằng bạn muốn tìm thể tích hình lăng trụ nào?có phải là thể tích hình hộp ko?
đầu bài nó chỉ cho như thế thôi, bạn thử tính xem là đáp án nào
Lời giải:
Từ $A$ kẻ $AA'$ song song với trục $OO'$ ( $A'$ nằm trên đáy có tâm $O'$)
Khi đó \(AA'=OO'=a\sqrt{3}\) và \(AA'\) vuông góc với hai đáy.
\(AA'\parallel OO'\Rightarrow OO'\parallel (AA'B)\)
\(\Rightarrow d(OO', AB)=d(OO', (AA'B))=d(O', (AA'B))\)
Kẻ \(O'H\perp A'B\)
\(\left\{\begin{matrix} O'H\subset (\text{ đáy})\rightarrow O'H\perp AA'\\ O'H\perp A'B \end{matrix}\right.\) \(\Rightarrow O'H\perp (AA'B)\)
\(\Rightarrow O'H=d(O', (AA'B))=d(OO', AB)\)
-------------------------------------------
Do \(OO'\parallel AA'\) nên:
\((OO', AB)=30^0\Rightarrow (AA', AB)=30^0\Leftrightarrow \angle BAA'=30^0\)
\(\Rightarrow \frac{\sqrt{3}}{3}=\tan BAA'=\frac{BA'}{AA}=\frac{BA'}{a\sqrt{3}}\)
\(\Rightarrow BA'=a\Rightarrow BH=\frac{a}{2}\)
\(O'H=\sqrt{O'B^2-BH^2}=\sqrt{r^2-BH^2}=\sqrt{a^2-(\frac{a}{2})^2}=\frac{\sqrt{3}}{2}a\)
\(\Leftrightarrow d(AB,OO')=\frac{\sqrt{3}}{2}a\)
Đáp án B
Gọi H là hình chiếu của S lên (ABC)
\(\left\{{}\begin{matrix}SA\perp AB\\SH\perp AB\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAH\right)\Rightarrow AB\perp AH\)
\(\left\{{}\begin{matrix}SC\perp BC\\SH\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SCH\right)\Rightarrow BC\perp CH\)
\(SA=\sqrt{SB^2-AB^2}=2a\)
\(\widehat{SBH}=30^0\Rightarrow\left\{{}\begin{matrix}SH=a\sqrt{3}\\BH=3a\end{matrix}\right.\)
\(\widehat{SCH}=60^0\Rightarrow\left\{{}\begin{matrix}CH=a\\SC=2a\end{matrix}\right.\) \(\Rightarrow BC=2\sqrt{2}\)
\(\Rightarrow\Delta ABC\) cân tại B
\(AH=\sqrt{SA^2-SH^2}=a\Rightarrow\Delta AHC\) cân tại H
\(\Rightarrow AC\) vuông góc BH tại M với M là trung điểm AC
Hệ thức lượng: \(AC=2AM=\frac{2.AH.AB}{BH}=\frac{4a\sqrt{2}}{3}\)
\(BM=\sqrt{AB^2-AM^2}=\frac{8a}{3}\)
\(V=\frac{1}{3}SH.\frac{1}{2}BM.AC=\frac{16a^3\sqrt{6}}{27}\)
#meisngoctho
Lời giải:
Gọi $H$ là chân đường cao kẻ từ $S$ xuống mặt phẳng $(ABC)$
Ta có \(\left\{\begin{matrix} SH\perp AB\\ SA\perp AB\end{matrix}\right.\Rightarrow AB\perp (SHA)\rightarrow AB\perp HA\)
Tương tự \(BC\perp HC\). Kết hợp với \(ABC\) vuông cân tại $B$ suy ra \(ABCH\) là hình vuông
Có \(AH\parallel (SBC)\Rightarrow d(A,(SBC))=d(H,(SBC))\)
Kẻ \(HT\perp SC\). Có \(\left\{\begin{matrix} SH\perp BC\\ HC\perp BC\end{matrix}\right.\Rightarrow BC\perp (SHC)\Rightarrow BC\perp HT\)
Do đó \(HT\perp (SBC)\Rightarrow d(H,(SBC))=HT=\sqrt{\frac{SH^2.HC^2}{SH^2+HC^2}}=\sqrt{\frac{SH^2.AB^2}{SH^2+AB^2}}=\sqrt{2}\Rightarrow SH=\sqrt{6}a\)
Từ trung điểm $O$ của $AC$ dựng trục vuông góc với mặt phẳng $(ABC)$. Trên trục đó ta lấy điểm $I$ là tâm mặt cầu ngoại tiếp.
\(IS^2=IA^2=IH^2\Leftrightarrow (\overrightarrow{IO}+\overrightarrow{OH}+\overrightarrow{HS})^2=IO^2+OH^2\)
\(\Leftrightarrow HS^2+2\overrightarrow{IO}.\overrightarrow{HS}=0\)
Do \(\overrightarrow {SH}\parallel \overrightarrow {IO}\Rightarrow \overrightarrow {IO}=k\overrightarrow{SH}\). Thay vào PT trên có $k=\frac{1}{2}$
\(\Rightarrow IO=\frac{\sqrt{6}a}{2}\Rightarrow IA=\sqrt{IO^2+AO^2}=\sqrt{3}a\)
\(\Rightarrow S_{\text{mặt cầu}}=4\pi R^2=12a^2\pi\)
\(\Delta ABD\) đều cạnh a.
\(\Rightarrow S_{ABD}=\frac{a^2\sqrt{3}}{4}\Rightarrow S_{ABCD}=2S_{ABD}=\frac{a^2\sqrt{3}}{2}\)
\(\Delta ABB'\)vuông tại B \(\Rightarrow BB'=AB\tan30^o=a\sqrt{3}V=B.h=S_{ABCD}.BB'=\frac{3a^3}{2}\)
\(B'D'//BD\Rightarrow\widehat{\left(B'D';AC\right)}=\widehat{\left(BD;AC\right)}\)
\(tan\widehat{ADB}=\frac{AB}{AD}=\sqrt{3}\Rightarrow\widehat{ADB}=60^0\Rightarrow\left(\widehat{BD;AC}\right)=180^0-2.60^0=60^0\)
cám ơn ạ