Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(NQ=\sqrt{16^2+12^2}=20\left(cm\right)\)
NP/NQ=12/20=3/5
b: Xét ΔMHN vuông tại H và ΔNPQ vuông tại P co
góc MNH=góc NQP
=>ΔMHN đồg dạng với ΔNPQ
\(MH=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
c: Xét ΔMQN vuông tại M có MH là đường cao
nên MQ^2=QH*QN
a: Xét ΔMHQ vuông tại H và ΔPKN vuông tại K có
MQ=PN
\(\widehat{MQH}=\widehat{PNK}\)
Do đó: ΔMHQ=ΔPKN
Suy ra: MH=PK
a: \(NP=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔMNP có MQ là phân giác
nên QN/MN=QP/MP
=>QN/3=QP/4=(QN+QP)/(3+4)=20/7
=>QN=60/7cm; QP=80/7cm
b: QE//MN
=>PQ/PN=EQ/MN
=>EQ/12=80/7:20=4/7
=>EQ=48/7cm
c: MH=12*16/20=9,6cm
\(MQ=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\left(cm\right)\)
\(HQ=\sqrt{MQ^2-MH^2}=\dfrac{48}{35}\left(cm\right)\)
a) Xét ΔMNH vuông tại H và ΔNQP vuông tại P có
\(\widehat{MNH}=\widehat{NQP}\)(hai góc so le trong, MN//QP)
Do đó: ΔMNH\(\sim\)ΔNQP(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNQ vuông tại M có MH là đường cao ứng với cạnh huyền NQ, ta được:
\(NH\cdot NQ=MN^2\)