K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

A B C D M N H I

Kẽ NI // BC

\(\Rightarrow\frac{DN}{DC}=\frac{AI}{AB}=\frac{AM}{AH}\)

\(\Rightarrow\)MI // BH

\(\Rightarrow\widehat{IMB}=\widehat{MBH}\left(1\right)\)

Tứ giác IBCN có

\(\widehat{IBC}=\widehat{BIN}=\widehat{BCN}\)

\(\Rightarrow\)Tứ giác IBCN là hình chữ nhật

\(\Rightarrow\widehat{NBC}=\widehat{BCI}\left(2\right)\)

Xét tứ giác IMCB có

\(\widehat{IMC}=90\)(vì IM // BH và BH vuông góc AC)\

\(\widehat{IBC}=90\)

\(\Rightarrow\)Tứ giác IMCB là tứ giác nội tiếp đường tròn

\(\Rightarrow\widehat{IMB}=\widehat{ICB}\left(3\right)\)(cùng chắn cung IB) 

Từ (1),(2),(3) \(\Rightarrow\widehat{MBH}=\widehat{NBC}\)

\(\Rightarrow\widehat{BMC}=90-\widehat{MBH}=90-\widehat{NBC}=\widehat{CNB}\)

\(\Rightarrow\)Tứ giác MBCN nội tiếp đường tròn 

Hay M,B,C,N cùng nằm trên một đường tròn

23 tháng 9 2020

giải thích kĩ hơn đi boy :))

4 tháng 11 2018

A B C D M N F O E I J x

a) Xét \(\Delta\)ABM và \(\Delta\)ADN có: ^ABM = ^ADN (=900); AB=AD; BM=DN  => \(\Delta\)ABM = \(\Delta\)ADN (c.g.c)

=> AM=AN (2 canh tương ứng);  ^BAM = ^DAN (2 góc tương ứng). Mà ^BAM + ^DAM = 900

=> ^DAN + ^DAM = ^MAN = 900 => AM vuông góc AN

Ta có: MF//AN; NF//AM; AM vuông góc AN nên ^MAN = ^AMF = ^ANF = 900

Do đó: Tứ giác ANFM là hình chữ nhật. Lại có: AM=AN (cmt) => Tứ giác ANFM là hình vuông (đpcm).

b) Gọi I và J lần lượt là hình chiếu của F trên 2 đường thẳng CD và BC

Tứ giác ANFM là hình vuông => FM=FN

Xét tứ giác CNFM có: ^MCN = ^MFN = 900 => ^FNC + ^CMF = 1800 => ^FNC = ^FMJ hay ^FNI = ^FMJ

Xét \(\Delta\)FIN và \(\Delta\)FJM có: ^FIN = ^FJM (=900); FN=FM; ^FNI = ^FMJ

=> \(\Delta\)FIN = \(\Delta\)FJM (Ch.gn) => FI = FJ (2 cạnh tương ứng)

Xét ^MCN: Có FI và FJ là k/c từ điểm F tới 2 cạnh của góc này; FI=FJ

=> F nằm trên đường phân giác của ^MCN (đpcm).

c) Gọi giao điểm của tia AD và CF là E.

CF là phân giác ^MCN => ^FCN = ^MCN/2 = 450 => ^FCN = ^ACD = 450 

=> \(\Delta\)ACE vuông tại C có đường phân giác CD. Mà CD vuông góc AE

=> \(\Delta\)ACE vuông cân tại C = >CD đồng thời là đường trung tuyến => D là trung điểm AE

Suy ra: OD là đường trung bình \(\Delta\)FAE => OD // EF hay OD // CF (1)

Dễ c/m: BD // CF (Do ^DBC + ^BCF = 450 + 1350 = 1800)                  (2)

Từ (1) và (2) => 3 điểm B;D;O thẳng hàng (đpcm).

d) Ta thấy: B;D;O là 3 điểm thẳng hàng; BD cố định nên O luôn thuộc đường thẳng BD cố định khi M di động trên Cx.

4 tháng 11 2018

câu e đâu bạn :v