Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHDA vuông tại H và ΔADB vuông tại A có
góc HDA chung
Do đo: ΔHDA đồng dạng với ΔADB
=>DA/DA=DA/DB(2)
b: Xét ΔABD vuông tại A có AH là đường cao
nên \(DA^2=DH\cdot DB\)
c: Xét ΔDHA có DM là phân giác
nên HM/AM=DH/DA(1)
Xét ΔDAB có DK là đường phân giác
nên AK/BK=DA/DB(3)
Từ (1), (2)và (3) suy ra HM/AM=AK/BK
hay \(HM\cdot BK=AK\cdot AM\)
hình bạn tự vẽ nhé
a, chứng minh theo trường hợp (g-g)
b, vì\(\Delta\)HDA \(\sim\)\(\Delta\)ADB\(\Rightarrow\)\(\dfrac{DA}{HD}=\dfrac{DB}{DA}\)\(\Rightarrow\)\(AD^2=DB.HD\)
c, vì \(\Delta HDA\sim\Delta ADB\)\(\Rightarrow\dfrac{DH}{AD}=\dfrac{DA}{DB}\)
\(mà\dfrac{DA}{DB}=\dfrac{AK}{KB}\)(vì AK là tia phân giác của goc ADB)
\(\Rightarrow\)\(\dfrac{DH}{AD}=\dfrac{AK}{KB}\)mà \(\dfrac{DH}{AD}=\dfrac{MH}{AM}\)\(\Rightarrow\)\(\dfrac{MH}{AM}=\dfrac{AK}{KB}\)\(\Rightarrow\)AM.AK=MH.KB
d
xét tam giác ABC:
EP//BC (cùng // AD)
=> AP/AC=AE/AB (talet) (1)
xét tam giác ADC:
PF//DC (cùng //AB)
=> AF/AD=AP/AC (talet) (1)
từ (1) (2) => AE/AB=AF/AD
xét tam giác ABD có:
AF/AD=AE/AB (cmt)
=> EF//BD (talet đảo)
xét tam giác QFE và QBD:
EQF=BQD (đối đỉnh)
QBD=EFQ (so le trong)
=> đồng dạng
=> EF/BD=EQ/QD => 2EI/2OD=EQ/QD
chứng minh tam giác EQI đồng dạng DQO vì có 2 góc đối đỉnh và 2 góc so le trong
=> góc EQI=DQO
=> I, Q, O thẳng hàng
mà A là trung điểm của AP (AEPF là hcn)
=> I, A thằng hàng
=> A, Q, O thẳng hàng
A B C D H O P M K E F I Q
d) +)CM EF // DB
Gọi I là giao điểm của EF và AP
Vì tứ giác ABCD là hình chữ nhật và O là giao điểm của AC và BD nên AO = OB
Suy ra \(\Delta AOB\) cân tại O
=> \(\widehat{OAB}=\widehat{OBA}\) (1)
Vì tứ giác AEPF là hình chữ nhật và I là giao điểm của AP và EF nên AI = IE
Suy ra \(\Delta AIE\) cân tại O
\(\Rightarrow\widehat{OAE}=\widehat{AEI}\) (2)
Từ (1) và (2) suy ra \(\widehat{OBA}=\widehat{AEI}\) mà 2 góc này nằm ở vị trí đồng vị nên EF // BD
+) CM A, Q ,O thẳng hàng
Vì FE // DB \(\Rightarrow\Delta EQF\sim\Delta DQB\Rightarrow\frac{EF}{BD}=\frac{EQ}{QD}\Rightarrow \frac{2EI}{2DO}=\frac{EQ}{QD}\)
Xét \(\Delta EQI \) và \(\Delta DQO\) có :
\(\widehat{FED}=\widehat{EDB}\)
\(\frac{EI}{DO}=\frac{EQ}{QD}\)
\(\Rightarrow\Delta EQI\sim\Delta DQO\)
\(\Rightarrow\widehat{EQI}=\widehat{DQO}\)
mà \(\widehat{IQE}+\widehat{IQD}=180^o\)
\(\Rightarrow\widehat{DQO}+\widehat{IQD}=180^ohayI,Q,O\) thẳng hàng hay A, Q, O thẳng hàng