\(2\sqrt{2}\) . Lấy M,N,P,Q trên các cạnh AB,BC,CD,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi I, H, K lần lượt là trung điểm các đoạn QM, QN, PN.

Xét tam giác AQM vuông tại A có AI là đường trung tuyến nên suy ra AI=12QMAI=12QM

IH là đường trung bình của tam giác QMN nên IH=12MNIH=12MN, IH // MN.

Tương tự KC=12NP,HK=12PQKC=12NP,HK=12PQ, HK // PQ.Do đó AI+IH+HK+KC=12PMNPQAI+IH+HK+KC=12PMNPQ

Mặt khác nếu xét các điểm A, I, H, K, C ta có: AI+IH+HK+KC≥ACAI+IH+HK+KC≥ACDo đó PMNPQ≥2ACPMNPQ≥2AC (không đổi)

Dấu “=” xảy ra khi và chỉ khi A, I, H, K, C thẳng hàng theo thứ tự đó.

Điều đó tương đương với MN//AC//QP, QM//BD//NP hay MNPQ là hình bình hành.

Vậy giá trị nhỏ nhất của chu vi MNPQ là 2AC.

13 tháng 8 2017

Gợi ý thôi nhé. gọi E,F lần lượt là trung điểm MN, PQ.
1. So sánh MN với BE, PQ với DF
2. So sánh MQ + NP với EF (gợi ý: áp dụng Thales)
3. So sánh BE + EF + DF với BD
4. Kết luận (cẩn thận khi trả lời tứ giác BDEF là hình gì)

Hiểu ko ku, nếu hiểu giải thích t cái, tìm gt nhỏ nhất của tg MNPQ đó, ko hiểu

3 tháng 7 2018

cảm ơn bạn Đen đủi mất cái nik nha