K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

a) 

vì ABCD hình chữ nhật nên ta có AB//CD 

=> góc ABH= góc BDC ( so le trong, AB//CD)

 xét tam giác AHB,BCD có 

góc A= góc C =90

góc ABH=BDC(cmt)

=> tam giác AHB đồng dạng với tam giác CDB (gg)

b)

vì ABCD hcn nên 

AB=CD=12

BC=AD=9

AD Đlí pytado cho tam giác vuông CDB có 

BD2=BC2+DC2

BD2=81+144

BD=15cm

theo câu a) ta có

AH/AB=BC/BD

=> AH= AB.BC chia BD

AH= 12.9 chia 15

AH= 7.2CM

C)

BD

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)

Do đó: ΔAHB~ΔBCD

b: ta có: ΔABD vuông tại A

=>\(AB^2+AD^2=BD^2\)

=>\(BD^2=12^2+5^2=169\)

=>\(BD=\sqrt{169}=13\left(cm\right)\)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AH\cdot BD=AB\cdot AD\)

=>\(AH\cdot13=12\cdot5=60\)

=>\(AH=\dfrac{60}{13}\left(cm\right)\)

c: Xét ΔBCD có CE là phân giác

nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(1)

Xét ΔHAB vuông tại H và ΔADB vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔHAB~ΔADB

=>\(\dfrac{HA}{AD}=\dfrac{HB}{AB}\)

=>\(\dfrac{HA}{HB}=\dfrac{AD}{AB}=\dfrac{BC}{CD}\left(2\right)\)

Từ (1),(2) suy ra \(\dfrac{EB}{ED}=\dfrac{HA}{HB}\)

=>\(EB\cdot HB=HA\cdot ED\)

5 tháng 4 2015

a, Vì ABCD là hình chữ nhật nên AB// DC => góc ABD = BDC ( hai góc đối đỉnh)

Xét tam giác AHB và tam giác BCD có

      góc AHB = góc BCD =90 ĐỘ

     góc ABD = BDC ( cmtrên)

Suy ra .............( g.g)

Vì ABCD là hcn nên AB =DC =20

                              BC=AD=15

Theo định lí Pitago trong tam giác BCD

   \(BD^2=BC^2+DC^2\)

\(BD^2=20^2+15^2\)

\(BD^2=625\)

BD = 25

Theo a ta có \(\frac{AH}{AB}=\frac{BC}{BD}\)

NÊN \(AH=\frac{AB\cdot BC}{BD}\)

 \(AH=\frac{20\cdot15}{25}\)

AH=12

c, d tự trả lời

e hình như dựa một chút vào tình chất đường phân giác trong tam giác

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

góc ABH=góc BDC

=>ΔAHB đồng dạng với ΔBCD

b: BD=căn 9^2+12^2=15cm

AH=9*12/15=108/15=7,2cm
c: Xét ΔHAD có HN/HA=HP/HD

nên NP//AD và NP=AD/2

=>NP//BC và NP=BC/2

=>NP//BM và NP=BM

=>BNPM là hình bình hành