K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

Kẻ A1H ⊥ AB, ta có:

A 1 I = 2,5cm; AJ = 5cm

Suy ra: AH = 2,5cm

Áp dụng định lí Pi-ta-go vào tam giác vuông A 1 H A , ta có:

A 1 A 2 = A 1 H 2 + A H 2  = 52 + 2,52 = 31,25

Suy ra: A 1 A = 31 , 25 ≈ 5,59 (cm)

Ta có: O 1 I = 2,5; OJ = 5cm.

Kẻ I I 1  ⊥ OJ, suy ra I 1 J = 2,5.

Áp dụng định kí Pi-ta-go vào tam giác vuông I I 1 J , ta có:

I J 2 = I I 1 2 + I 1 J 2

Suy ra:  I I 1 2 = I J 2 + I 1 J 2  = 52 – 2,52 = 18,75

Suy ra: I I 1  = 18 , 75 ≈ 4,33 (cm)

Vậy O 1 O =  I I 1  = 4,33 (cm)

7 tháng 6 2021

Bạn tự vẽ hình nha

a, Gọi \(O=BD\cap AC\)

K là trung điểm của CD

\(\Rightarrow OK=\dfrac{1}{2}AD=\dfrac{1}{2}CD=5\)

b, \(S_{xq}=\left(AB+BC\right).SK\)

\(=\left(10+10\right).13\)

\(=260\left(cm^2\right)\)

c, \(V_{S_{ABCD}}=\dfrac{1}{3}.SO.SB.SC\)

\(=\dfrac{1}{3}.12.10.10\)

\(=400\left(cm^3\right)\)

-Chúc bạn học tốt-

16 tháng 5 2023

bạn thiếu r nè, chưa tính SO 

 

28 tháng 2 2019

Chọn đáp án A

Gọi O là giao điểm của AC và BD.

Áp dụng định lí Pytago vào tam giác vuông ABC có:

Bài tập: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng định lí Pytago vào tam giác vuông SAO có:

S O 2 = S A 2 - A O 2 = 13 2 - 5 2 = 144  nên SO = 12cm

Bài tập: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

7 tháng 6 2019

a) Ta có: AC2 = AB2 + BC2 (Pytago) = 32 + 32 = 18(cm)

Lại có: SH2 = SC2 - HC2 (Pytago)

b) Gọi K là trung điểm của BC

Ta có: SK2 = SH2 + HK2 (Pytago)

4 tháng 7 2020

( Vào TKHĐ là thấy hính nha bạn )

a) S.ABCD là hình chóp tứ giác đều

=> ABCD là hình vuông

=> .\(AC=AB\sqrt{2}=20\sqrt{2}\left(cm\right)\)

SO là chiều cao của hình chóp

=> O = AC ∩ BD và SO ⊥ (ABCD)

=> SO ⊥ AO

=> ΔSAO vuông tại O

=> SO2 + OA2 = SA2

\(\Rightarrow SO^2=SA^2-OA^2=SA^2-\left(\frac{AC}{2}\right)^2=24^2-\left(\frac{20\sqrt{2}}{2}\right)^2=376\)

=> SO =  \(\sqrt{376}\approx19,4\left(cm\right)\)(cm).

Thể tích hình chóp :

\(V=\frac{1}{3}SO.S_{ABCD}=\frac{1}{3}.\sqrt{376}.20^2=2585,43\left(cm^3\right)\)

b) Gọi H là trung điểm của CD :

\(SH^2=SD^2-DH^2=24^2-\left(\frac{20}{2}\right)^2=476\)

\(\Rightarrow SH=\sqrt{476}\approx21,8\left(cm\right)\)

=> Sxq = p.d = 2.AB.SH = \(2.20.\sqrt{476}\approx\) 872,7 (cm2 ).

Sđ = AB2 = 202 = 400 (cm2 )

⇒ Stp = Sxq + Sđ = 872,7 + 400 = 1272,7 (cm2 ).