Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét tam giác BID vuông tại I, có
\(I{{\rm{D}}^2} = B{{\rm{D}}^2} - B{I^2} = {10^2} - {5^2}\)
=> ID ≈ 8,66 (cm)
- Diện tích tam giác BCD là:
\({S_{BC{\rm{D}}}} = \frac{1}{2}.I{\rm{D}}.BC = \frac{1}{2}.8,66.10 = 43,3\left( {c{m^2}} \right)\)
- Thể tích hình chóp là:
\(V = \frac{1}{3}.S.h = \frac{1}{3}.43,3.12 \approx 173,2(c{m^3})\)
Cặp tam giác vuông ở hình d. Vì cạnh huyền và một cạnh góc vuông của tam giác này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác vuông kia
- ΔCNM ~ ΔCAB (vì MN // AB) (1)
- ΔMPB ~ ΔCAB (vì MP // AC) (2)
- Từ (1) và (2) => ΔCNM ~ ΔMPB
* Nửa chu vi của tam giác ABC là:
\(\left( {12 + 12 + 12} \right):2 = 18(m)\)
Xét tam giác HBD vuông tại H, có:
\(\begin{array}{l}H{{\rm{D}}^2} = B{{\rm{D}}^2} - B{H^2} = {8^2} - {6^2}\\ \Rightarrow H{\rm{D}} = 2\sqrt 7 \end{array}\)
Diện tích xung quanh của hình chóp tam giác đều là:
\({S_{xq}} = p.d = 18.2\sqrt 7 = 36\sqrt 7 \left( {{m^2}} \right)\)
* Nủa chu vi của tứ giác ABCD là:
\(\left( {10.4} \right):2 = 20\)
Xét tam giác SHD vuông tại H, ta có:
\(\begin{array}{l}S{H^2} = S{{\rm{D}}^2} - H{{\rm{D}}^2} = {12^2} - {6^2} = 119\\ \Rightarrow SH = \sqrt {119} \end{array}\)
Diện tích xung quanh của hình chóp tứ giác đều là:
\({S_{xq}} = p.d = 20.\sqrt {119} = 20\sqrt {119} \left( {{m^2}} \right)\)
Hình chóp tam giác đều S. ABC có:
- Đỉnh: S
- Cạnh bên: SA, SB, SC.
- Mặt đáy: tam giác ABC.
- Đường cao: SO.
- Trung đoạn: SH
- Đỉnh: S
- Cạnh bên: SD, SE, SF
- Mặt bên: SDE, SEF, SDF
- Mặt đáy: DEF
- Đường cao: SO
- Một trung đoạn: SI
Vì tam giác MNP đều
=> MN=NP=MP=6cm
=> IN=IP=3cm
Xét tam giác MIN vuông tại I, có:
\(\begin{array}{l}M{I^2} = M{N^2} - I{N^2} = {6^2} - {3^2}\\ \Rightarrow MI = 5,2\\ \Rightarrow {S_{MNP}} = \frac{1}{2}.MI.NP = \frac{1}{2}.5,2.6 = 15,6(c{m^2})\\ \Rightarrow V = \frac{1}{3}.S.h = \frac{1}{2}.15,6.5 = 26(c{m^3})\end{array}\)
a: \(S_{MNP}=6^2\cdot\dfrac{\sqrt{3}}{4}=9\sqrt{3}\left(cm^2\right)\)
b: \(V=\dfrac{1}{3}\cdot S_{MNP}\cdot h=\dfrac{1}{3}\cdot5.19\cdot9\sqrt{3}\simeq26\left(cm^2\right)\)