K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

(SC;(ABCD))=(CS;CA)=góc SCA

tan SCA=SA/AC=1/căn 2

=>góc SCA=35 độ

b:

Kẻ BH vuông góc AC tại H

(SB;SAC)=(SB;SH)=góc BSH

\(HB=\dfrac{a\cdot a}{a\sqrt{2}}=a\cdot\dfrac{\sqrt{2}}{2}\)

AH=AC/2=a*căn 2/2

=>\(SH=\sqrt{a^2+\dfrac{1}{2}a^2}=a\sqrt{\dfrac{3}{2}}\)

\(SH=\dfrac{a\sqrt{6}}{2};HB=\dfrac{a\sqrt{2}}{2};SB=a\sqrt{2}\)

\(cosBSH=\dfrac{SB^2+SH^2-BH^2}{2\cdot SB\cdot SH}=\dfrac{\sqrt{3}}{2}\)

=>góc BSH=30 độ

c: (SD;(SAB))=(SD;SA)=góc ASD

tan ASD=AD/AS=2

nên góc ASD=63 độ

 

7 tháng 12 2018

a) Chứng minh  B 1 ,   C 1 ,   D 1  lần lượt là trung điểm của các cạnh SB, SC, SD

Ta có:

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ A 1 B 1  là đường trung bình của tam giác SAB.

⇒   B 1  là trung điểm của SB (đpcm)

*Chứng minh tương tự ta cũng được:

• C 1  là trung điểm của SC.

• D 1  là trung điểm của SD.

b) Chứng minh  B 1 B 2   =   B 2 B ,   C 1 C 2   =   C 2 C ,   D 1 D 2   =   D 2 D .

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ A 2 B 2  là đường trung bình của hình thang A 1 B 1 B A

⇒   B 2  là trung điểm của B 1 B

⇒   B 1 B 2   =   B 2 B (đpcm)

*Chứng minh tương tự ta cũng được:

• C 2  là trung điểm của C 1 C 2   ⇒   C 1 C 2   =   C 2 C

• D 2  là trung điểm của D 1 D 2   ⇒   D 1 D 2   =   D 2 D .

c) Các hình chóp cụt có một đáy là tứ giác ABCD, đó là : A 1 B 1 C 1 D 1 . A B C D   v à   A 2 B 2 C 2 D 2 . A B C D

NV
2 tháng 1 2024

Do M là trung điểm SD, N là trung điểm SC \(\Rightarrow MN\) là đường trung bình tam giác SCD

\(\Rightarrow MN||CD\) (1)

Tương tự PQ là đường trung bình tam giác SAB \(\Rightarrow PQ||AB\)

\(\Rightarrow MN||PQ\Rightarrow\) 4 điểm M, N, P, Q đồng phẳng

Lại có MQ là đường trung bình tam giác SAD \(\Rightarrow MQ||AD\)

Mà \(AD\in\left(ABCD\right)\Rightarrow MQ||\left(ABCD\right)\) 

Do \(CD\in\left(ABCD\right)\), từ \(\left(1\right)\Rightarrow MN||\left(ABCD\right)\) 

Mà \(\left\{{}\begin{matrix}MN\in\left(MNPQ\right)\\MQ\in\left(MNPQ\right)\\MN\cap MQ=M\end{matrix}\right.\)\(\Rightarrow\left(MNPQ\right)||\left(ABCD\right)\)

AH
Akai Haruma
Giáo viên
28 tháng 3 2021

Lời giải:

Gọi $Q$ là điểm nằm trên $DC$ sao cho $AD\parallel PQ$

Khi đó: $MN\parallel AD\parallel PQ$ nên $Q\in (MNP)$

$(MNPQ)$ chính là thiết diện của hình chóp cắt bởi $(MNP)$
Giờ ta cần tìm diện tích hình thang $MNPQ$

$SA=SD; DB=SC; AB=CD$ nên $\triangle SAB=\triangle SDC$

Tương ứng ta có $MP=NQ$

$MN=\frac{AD}{2}=\frac{3a}{2}$

$PQ=AD=3a$

$\Rightarrow MNPQ$ là hình thang cân.

Áp dụng định lý cos:

$\cos \widehat{SAB}=\frac{SA^2+AB^2-SB^2}{2SA.AB}=\frac{MA^2+AP^2-MP^2}{2MA.AP}$

$\Leftrightarrow \frac{9a^2+9a^2-27a^2}{2.3a.3a}=\frac{\frac{9}{4}a^2+4a^2-MP^2}{2.\frac{3}{2}a.2a}$

$\Rightarrow MP^2=\frac{37}{4}a^2$

$\Rightarrow h_{MNPQ}=\sqrt{MP^2-(\frac{PQ-MN}{2})^2}=\frac{\sqrt{139}}{4}a$

Diện tích thiết diện:

$S=\frac{MN+PQ}{2}.h=\frac{9\sqrt{139}}{16}a^2$

 

 

NV
7 tháng 1 2024

Em kiểm tra lại đề, \(\left(\alpha\right)\) đi qua AI nên nó không thể cắt SA tại M được nữa (vì nó đi qua A nên đã cắt SA tại A rồi)

7 tháng 1 2024

Anh ơi, (a) qua điểm I có đúng không ạ anh, vì đề mờ chỗ đấy anh ạ, chắc chỉ qua điểm I thôi ạ 

2 tháng 2 2017