K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi O là tâm hình vuông ABCD , dễ thấy I, O, K thẳng hàng. Vì K là trung điểm của BC nên SK ⊥ BC.

Ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó (SBC) ⊥ (SIK)

b) Hai đường thẳng AD và SB chéo nhau. Ta có mặt phẳng (SBC) chứa SB và song song với AD. Do đó khoảng cách giữa AD và SB bằng khoảng cách giữa AD và mặt phẳng (SBC).

Theo câu a) ta có (SIK) ⊥ (SBC) theo giao tuyến SK và khoảng cách cần tìm là IM, trong đó M là chân đường vuông góc hạ từ I tới SK. Dựa vào hệ thức IM. SK = SO. IK

ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta lại có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 Giải sách bài tập Toán 11 | Giải sbt Toán 11

 Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy khoảng cách giữa hai đường thẳng AD và SB là bằng Giải sách bài tập Toán 11 | Giải sbt Toán 11

1 tháng 10 2019

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

Gọi I = AC ∩ MN ⇒ I là trung điểm của OC, ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Ta có: MN// BD mà BD ⊥ (SAC)(cmt) ⇒ MN ⊥ (SAC).

- Trong (SAC) kẻ AH ⊥ SI (H ∈ SI) ⇒ MN ⊥ AH.

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Xét tam giác vuông SAI ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

22 tháng 2 2021

Ta có \(\frac{d\left(A,\left(SCD\right)\right)}{d\left(M,\left(SCD\right)\right)}=2\Rightarrow d=\left(m,\left(SCD\right)\right)=\frac{1}{2}d\left(A,\left(SCD\right)\right)\)

Dễ thấy AC _|_ CD, SA _|_ CD dựng AH _|_ SA => AH _|_ (SCD)

Vậy d(A,(SCD))=AH

Xét tam giác vuông SAC (A=1v) có \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AS^2}\Rightarrow AH=\frac{a\sqrt{6}}{3}\)

Vậy suy ra \(d\left(M,\left(SCD\right)\right)=\frac{a\sqrt{6}}{3}\)

E=ABCD,G=ENSBGE=AB∩CD,G=EN∩SB⇒G là trọng tâm tam giác SAE.

d(M,(NCD))=GMGBd(B,(NCD))=12d(B,(NCD))=12.12d(A,(NCD))=14d(A,(NCD))=14hd(M,(NCD))=GMGBd(B,(NCD))=12d(B,(NCD))=12.12d(A,(NCD))=14d(A,(NCD))=14h 

Tứ diện AEND vuông tại đỉnh A nên 1h2=1AN2+1AE2+1AD2=116a2h=a66111h2=1AN2+1AE2+1AD2=116a2⇒h=a6611 

Vậy d(M,(NCD))=a6644.d(M,(NCD))=a6644. 

8 tháng 9 2017

Đáp án C

=> SA = AB = a

11 tháng 1 2017

Chọn A.

Xác định được

Vì M là trung điểm SA nên 

Kẻ AK  ⊥ DM và chứng minh được AK  (CDM) nên 

Trong tam giác vuông MAD tính được 

22 tháng 2 2021

+ SA⊥(ABCD)⇒SA⊥BDSA⊥(ABCD)⇒SA⊥BD (1)

+ ABCD là hình vuông ⇒AC⊥BD⇒AC⊥BD (2)

+ Từ (1) và (2) suy ra BD⊥(SAC)⇒BD⊥SCBD⊥(SAC)⇒BD⊥SC

22 tháng 2 2021
Mình không biết.
12 tháng 4 2019

Câu hỏi của Phạm Thùy Dương - Toán lớp 11 - Học toán với OnlineMath

Em tham khảo bài làm tại link này nhé!

12 tháng 4 2019

Cộng đồng học tập online | Học trực tuyến

Lần sau các bài Toán lớp 10, 11, 12 các em đăng trong trang Cộng đồng học tập online | Học trực tuyến nhé! olm hầu như để giải đáp thắc mắc của HỌc sinh tiểu học và trung học em nhé :). Chúc em học tập tốt :)<3

22 tháng 2 2021

Dựng CH _|_ AB => CH _|_ (SAB)

Giả sử MN cắt AD tại F. Theo định lý Talet ta có:

\(\frac{DF}{MC}=\frac{ND}{NC}=\frac{1}{2}\Rightarrow DF=\frac{MC}{2}=\frac{a}{4}\)

Khi đó \(\frac{PA}{PC}=\frac{AF}{MC}=\frac{5}{2}\Rightarrow\frac{CA}{PA}=\frac{7}{5}\)

Do đó: d (P;(SAB))=\(\frac{5}{7}d\left(C;\left(SAB\right)\right)=\frac{5}{7}CH=\frac{5}{7}\cdot\frac{a\sqrt{3}}{2}=\frac{5a\sqrt{3}}{14}\)

8 tháng 5 2021

\(\dfrac{\sqrt{3}a5}{14}\)