K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2021

4 tháng 12 2021

3 tháng 8 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi H là trung điểm của SC

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Gọi M’ là trung điểm của SA ⇒ MM′ // AD và MM′ = AD/2.

Mặt khác vì BC // AD và BC = AD/2 nên BC // MM′ và BC = MM′.

Do đó tứ giác BCMM’ là hình bình hành ⇒ CM // BM′ mà BM′ ⊂ (SAB)

⇒ CM // (SAB)

c) Ta có: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác vì Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

OI ⊂ (BID) ⇒ SA // (BID)

22 tháng 12 2020

Xin bổ sung thêm là Q là TĐ của SB nha

NV
22 tháng 12 2020

Bạn coi lại đề bài.

N,M,P,Q là các điểm trên CD, AD, SA hay trung điểm?

Vì nếu trung điểm thì làm sao thỏa mãn MD=2MC hay NA=3ND được?

13 tháng 8 2021

undefined

11 tháng 12 2023

a: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

b: Xét ΔSAB có

M,N lần lượt là trung điểm của AS,AB

=>MN là đường trung bình của ΔSAB

=>MN//SB

Ta có: MN//SB

SB\(\subset\)(SBC)

MN ko nằm trong mp(SBC)

Do đó: MN//(SBC)

10 tháng 11 2023

loading...  loading...  loading...  loading...  loading...  loading...  loading...  

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

\(\Rightarrow\dfrac{OC}{CA}=\dfrac{CI}{CS}\Rightarrow OI\) // \(SA\)

\(OI\subset\left(BID\right)\Rightarrow SA\) // \(\left(BID\right)\)

23 tháng 1 2018

Nếu thêm phần d là : xác định giao điểm K của BG và (SAC).Tính KB/KG thì làm kiểu gì ạ?

13 tháng 12 2020

Hôm nay đi cắt lại cái kính, uay đi uay lại mất luôn buổi sáng :(

undefined

13 tháng 12 2020

Bài này để sáng mai thử nghĩ coi sao nhó :) Giờ đi học hóa đã, rảnh inbox tui tán chuyện phiếm xí, dạo này ông anh đi làm đồ án chán chả có ai ngồi nói chuyện cùng :(

29 tháng 12 2023

a: Chọn mp(SAB) có chứa MN

Ta có: \(AB\subset\left(SAB\right)\)

\(AB\subset\left(ABCD\right)\)

Do đó: \(\left(SAB\right)\cap\left(ABCD\right)=AB\)

Gọi P là giao điểm của MN với AB

=>P là giao điểm của MN với mp(ABCD)

b: Ta có: SN+NB=SB

=>2NB+NB=SB

=>SB=3NB

=>\(\dfrac{SN}{SB}=\dfrac{2}{3}\)

Xét ΔSBA có P,M,N thẳng hàng

nên \(\dfrac{PB}{PA}\cdot\dfrac{MA}{MS}\cdot\dfrac{NS}{NB}=1\)

=>\(\dfrac{PB}{PA}\cdot1\cdot2=1\)

=>\(\dfrac{PB}{PA}=\dfrac{1}{2}\)

=>B là trung điểm của AP

Trong mp(ABCD), gọi O là giao điểm của AC và BD

Ta có: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔAPC có

B,O lần lượt là trung điểm của AP,AC

=>BO là đường trung bình của ΔAPC

=>BO//PC

=>BD//PC

Ta có: PC//BD

BD\(\subset\)(SBD)

PC không nằm trong mp(SBD)

Do đó: PC//(SBD)