K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

A B C H M N O a

a/ Ta có BH = a-5 = 13-5 = 8 (cm) , CH = a+5 = 13+5 = 18 (cm)

Dễ thấy AMHN là hình chữ nhật => AH = MN

Mặt khác, áp dụng hệ thức về cạnh trong tam giác vuông,ta có : \(AH^2=BH.CH=8.18=144\Rightarrow AH=MN=12\)

b/ Bạn tham khảo ở đây : http://olm.vn/hoi-dap/question/677639.html

3 tháng 10 2016

Chờ lâu :)

14519682_209659502787207_8734420917537679207_n.jpg?oh=1230a5bed06c0d584a03ec31eed85694&oe=586F45D3

14563392_209659506120540_6755403998488933941_n.jpg?oh=c7152526f9c4f5ef53877b69914b2412&oe=58AD73DB

14485026_209659499453874_4306180727180809094_n.jpg?oh=1af4d47569bbd03f55b784a1720fadce&oe=5866D63D

Bài 1: Cho tam giác ABC, kẻ AH vuông góc với BC, BH=9cm, HC=16cm, tgC=0,75.Trên AH lấy điểm O sao cho OH=2cma) CM: ABC là tam giác vuôngb) Trên cạnh AB lấy điểm M, trên OB lấy điểm P và trên OC lấy điểm N sao cho AM/AB=OP/OB=ON/OC=2/5. Tính độ dài các cạnh và số đo các góc của tam giác MPNBài 2:Cho tam giác vuông ABC( A=90 độ) Kẻ đường thẳng song song với cạnh BC cắt ccs cạnh AB,AC tại M,N, MB=12cm, NC=9cm, trung...
Đọc tiếp

Bài 1: Cho tam giác ABC, kẻ AH vuông góc với BC, BH=9cm, HC=16cm, tgC=0,75.Trên AH lấy điểm O sao cho OH=2cm

a) CM: ABC là tam giác vuông

b) Trên cạnh AB lấy điểm M, trên OB lấy điểm P và trên OC lấy điểm N sao cho AM/AB=OP/OB=ON/OC=2/5. Tính độ dài các cạnh và số đo các góc của tam giác MPN

Bài 2:Cho tam giác vuông ABC( A=90 độ) Kẻ đường thẳng song song với cạnh BC cắt ccs cạnh AB,AC tại M,N, MB=12cm, NC=9cm, trung điểm của MN và BC là E và F

a) CM: 3 điểm A,E,F thẳng hàng

b) Trung điểm BN là G. Tính độ dài các cạnh và số đo các góc của tam giác EFG

c) CM: Tam giác EFG đồng dạng tam giác ABC

Bài 3: Cho tam giác ABC, A= 90 độ. Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC. Nối AF và BE

a) CM; AF= BE.cos C

b) Biết BC=10cm, sinC=0,6. Tính diện tích tứ giác ABFE

c) AF và BE cắt nhau tại O. Tính SinAOB

Bạn nào giúp mk với ạ huhu cảm ơn nhiều nhiều

1
11 tháng 7 2019

Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath

Bạn tham khảo câu 2 tai link này nhé!

15 tháng 10 2016

A B C D F E M

Xét tam giác vuông là tam giác BEC và tam giác DCF có CD = BC , BE = CF = 1/2a

=> Tam giác BEC = tam giác DCF (hai cạnh góc vuông)

=> góc CDF = góc BCE mà góc CDF + góc DFC = 90 độ

=> góc ECF + góc DFC = 90 độ hay góc DMC = 90 độ => CE vuông góc DF

Ta chứng minh được tam giác MDC đồng dạng tam giác CDF (g.g)

Áp dụng định lí Pytago có \(DF=\sqrt{CD^2+FC^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)

\(S_{CDF}=\frac{1}{2}CD.CF=\frac{1}{2}a.\left(\frac{a}{2}\right)=\frac{a^2}{4}\)

Suy ra \(\frac{S_{MDC}}{S_{CDF}}=\left(\frac{CD}{DF}\right)^2=\left(\frac{a}{\frac{a\sqrt{5}}{2}}\right)^2=\left(\frac{2}{\sqrt{5}}\right)^2=\frac{4}{5}\)

\(\Rightarrow S_{MDC}=\frac{4}{5}S_{CDF}=\frac{4}{5}.\frac{a^2}{4}=\frac{a^2}{5}\)

15 tháng 10 2016

chiu

tk nhe

xin do

bye