Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi Q là trung điểm AB
Trong mp(IHS), gọi \(P=MQ\cap IH\)
a) Ta có:
\(\left\{{}\begin{matrix}P\in IH\subset\left(IHK\right)\\P\in MQ\subset\left(ABC\right)\end{matrix}\right.\)\(\Rightarrow P\in\left(IHK\right)\cap\left(ABC\right)\)
Lại có:
\(\left\{{}\begin{matrix}HK\text{/}\text{/}AC\left(Thales\right)\\HK\subset\left(IHK\right)\\AC\subset\left(ABC\right)\\\left(IHK\right)\cap\left(ABC\right)=d\end{matrix}\right.\)\(\Rightarrow d\text{/}\text{/}HK\text{/}\text{/}AC\)
\(\Rightarrow\left(IHK\right)\cap\left(ABC\right)=d\) đi qua P và \(d\text{/}\text{/}HK\text{/}\text{/}AC\)
b) Ta có:
\(\left\{{}\begin{matrix}S\in IM\subset\left(IHM\right)\\S\in\left(SBC\right)\end{matrix}\right.\)\(\Rightarrow S\in\left(IHM\right)\cap\left(SBC\right)\)
Lại có:
\(\left\{{}\begin{matrix}QM\text{/}\text{/}BC\left(Thales\right)\\QM\subset\left(IHM\right)\\BC\subset\left(SBC\right)\\\left(IHM\right)\cap\left(SBC\right)=d\text{'}\end{matrix}\right.\)\(\Rightarrow d\text{'}\text{/}\text{/}QM\text{/}\text{/}BC\)
\(\Rightarrow\left(IHM\right)\cap\left(SBC\right)=d\text{'}\) đi qua S và \(d\text{'}\text{/}\text{/}QM\text{/}\text{/}BC\)
a: Gọi O là giao điểm của AC và BD
\(O\in AC\subset\left(SAC\right);O\in BD\subset\left(SBD\right)\)
=>\(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)
b: Xét (SAD) và (SBC) có
AD//BC
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC
d: Trong mp(SAB), gọi I là giao điểm của AB với SM
\(I\in SM;I\in AB\subset\left(ABCD\right)\)
Do đó: I là giao điểm của SM với mp(ABCD)
a) Dễ thấy S là một điểm chung của hai mặt phẳng (SAD) và (SBC).
Ta có:
⇒ (SAD) ∩ (SBC) = Sx
Và Sx // AD // BC.
b) Ta có: MN // IA // CD
Mà
(G là trọng tâm của ∆SAB) nên
⇒ GN // SC
SC ⊂ (SCD) ⇒ GN // (SCD)
c) Giả sử IM cắt CD tại K ⇒ SK ⊂ (SCD)
MN // CD ⇒
Ta có:
a: Gọi O là giao điểm của AC và BD trong mp(ABCD)
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)
2: Trong mp(ABCD), gọi E là giao điểm của AD và BC
\(E\in AD\subset\left(SAD\right);E\in BC\subset\left(SBC\right)\)
Do đó: \(E\in\left(SAD\right)\cap\left(SBC\right)\)
mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)
nên \(\left(SAD\right)\cap\left(SBC\right)=SE\)
3: Xét (SBA) và (SCD) có
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
AB//CD
Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD