K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2023

a: Chọn mp(SAB) có chứa MN

Ta có: \(AB\subset\left(SAB\right)\)

\(AB\subset\left(ABCD\right)\)

Do đó: \(\left(SAB\right)\cap\left(ABCD\right)=AB\)

Gọi P là giao điểm của MN với AB

=>P là giao điểm của MN với mp(ABCD)

b: Ta có: SN+NB=SB

=>2NB+NB=SB

=>SB=3NB

=>\(\dfrac{SN}{SB}=\dfrac{2}{3}\)

Xét ΔSBA có P,M,N thẳng hàng

nên \(\dfrac{PB}{PA}\cdot\dfrac{MA}{MS}\cdot\dfrac{NS}{NB}=1\)

=>\(\dfrac{PB}{PA}\cdot1\cdot2=1\)

=>\(\dfrac{PB}{PA}=\dfrac{1}{2}\)

=>B là trung điểm của AP

Trong mp(ABCD), gọi O là giao điểm của AC và BD

Ta có: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔAPC có

B,O lần lượt là trung điểm của AP,AC

=>BO là đường trung bình của ΔAPC

=>BO//PC

=>BD//PC

Ta có: PC//BD

BD\(\subset\)(SBD)

PC không nằm trong mp(SBD)

Do đó: PC//(SBD)

 

NV
11 tháng 12 2021

Gọi O là giao điểm AC và BD \(\Rightarrow\) O là trung điểm AC

\(\Rightarrow\) G là trọng tâm tam giác ABC

\(\Rightarrow BG=\dfrac{2}{3}BO=\dfrac{2}{3}.\dfrac{1}{2}BD=\dfrac{1}{3}BD\)

\(\Rightarrow\dfrac{BG}{BD}=\dfrac{1}{3}\)

Lại có: \(SM=2MB\Rightarrow2MB=SB-MB\Rightarrow MB=\dfrac{1}{3}SB\Rightarrow\dfrac{MB}{SB}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{BG}{BD}=\dfrac{BM}{SB}=\dfrac{1}{3}\Rightarrow MG||SD\) (Talet đảo)

Mà \(SD\in\left(SAD\right)\Rightarrow MG||\left(SAD\right)\)

NV
11 tháng 12 2021

undefined

NV
18 tháng 11 2021

\(\left\{{}\begin{matrix}S=\left(SAC\right)\cap\left(SBD\right)\\O=\left(SAC\right)\cap\left(SBD\right)\end{matrix}\right.\) \(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)

b.

Trong mp (SAC), nối MO kéo dài cắt SC kéo dài tại H

\(\left\{{}\begin{matrix}H\in MO\\H\in SC\in\left(SCD\right)\end{matrix}\right.\) \(\Rightarrow H=MO\cap\left(SCD\right)\)

NV
18 tháng 11 2021

undefined

24 tháng 10 2023

 a) Gọi \(O=AC\cap BD\). Khi đó \(O\in\left(SAC\right)\cap\left(SBD\right)\). Lại có \(S\in\left(SAC\right)\cap\left(SBD\right)\) nên SO chính là giao tuyến của (SAC) và (SBD).

 b) Trong mp (AMNK) cho \(AN\cap MK=L\). Do \(AN\subset\left(SAC\right),MK\subset\left(SBD\right)\) nên \(L\in\left(SAC\right)\cap\left(SBD\right)\) nên \(L\in SO\)\(\Rightarrow\) L là trọng tâm tam giác SAC \(\Rightarrow\dfrac{SL}{LO}=2\). Mà \(\dfrac{SM}{MB}=2\) nên \(\dfrac{SL}{LO}=\dfrac{SM}{MB}\Rightarrow\) LM//BO hay MK//BD, suy ra đpcm.

2 tháng 1 2022

Thưa chị, em không vẽ hình vì sợ duyệt, với lại em lớp 9 nên chỉ làm bài này dựa vào chút kiến thức lớp 8 thôi ạ.

a) Hình bình hành ABCD có O là tâm nên O là trung điểm của đường chéo BD.

Xét \(\Delta BDS\)có I và O lần lượt là trung điểm của BS, BD

\(\Rightarrow\)IO là đường trung bình của \(\Delta BDS\)\(\Rightarrow\)IO//DS

Mà \(DS\in mp\left(SAD\right)\)nên IO//\(mp\left(SAD\right)\)(đpcm)

Em không làm được câu b ạ, em xin lỗi chị.