Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành
a: Xét tứ giác AECK có
AK//CE
AK=CE
=>AECK là hình bình hành
b: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm của AC
AECK là hbh
=>AC cắt EK tại trung điểm của mỗi đường
=>E,O,K thẳng hàng
c: Xét ΔDMC có
E là trung điểm của DC
EN//MC
=>N là trung điểm của DM
=>DN=NM
Xét ΔABN có
K là trung điểm của BA
KM//AN
=>M là trung điểm của BN
=>MB=MN=DN
Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành
ABCD là hbh=> AD//BC=> góc DAC= góc ACB và AO=OC
Xét tam giác AOE và tam giác COF ta có
góc AOE = góc COF (2 góc đối xừng)
AO=OC
góc DAC= góc ACB
=> tam giác AOE = tam giác COF=> OE=OF
CHứng minh tương tự ta có tam giác AOK= tam giác COH=> OK=OH
Xét tứ giác EHFK có EH và FK là 2 đường chéo cắt nhau tại O
lại có OE=OF
OH=OK
=> EHFk là hình bình hành (do 2 đường chéo cắt nhau tại trung điểm mỗi đường)
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔOAK và ΔOCH có
\(\widehat{OAK}=\widehat{OCH}\)(hai góc so le trong, AK//CH)
OA=OC
\(\widehat{AOK}=\widehat{COH}\)(hai góc đối đỉnh)
Do đó: ΔOAK=ΔOCH
=>OK=OH
=>O là trung điểm của KH
Xét ΔOAE và ΔOCF có
\(\widehat{EAO}=\widehat{FCO}\)(hai góc so le trong, AE//CF)
OA=OC
\(\widehat{AOE}=\widehat{COF}\)
Do đó: ΔOAE=ΔOCF
=>OE=OF
=>O là trung điểm của EF
Xét tứ giác EKFH có
O là trung điểm chung của EF và KH
=>EKFH là hình bình hành
a Xét tứ giác DEBF có
BE//DF
BE=FD
Do đó; DEBF là hình bình hành
=>DB cắt EF tại trung điểm của mỗi đường(1)
b: Vì ABCD là hình bình hành
nên AC cắt BD tại trung điểm của mõi đường(2)
Từ (1), (2) suy ra AC,BD,EF đồng quy
=>E,O,F thẳng hàng
a: Xét tứ giác AECK có
AK//EC
AK=EC
Do đó: AECK là hình bình hành