Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
ABCD là hình bình hành
=>AD=BC(1)
E là trung điểm của AD
=>\(EA=ED=\dfrac{AD}{2}\left(2\right)\)
F là trung điểm của BC
=>\(FB=FC=\dfrac{BC}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra EA=ED=FB=FC
Bài 2:
a: ABCD là hình bình hành
=>\(\widehat{A}+\widehat{B}=180^0\)
=>\(\widehat{B}=180^0-60^0=120^0\)
ABCD là hình bình hành
=>\(\widehat{A}=\widehat{C};\widehat{B}=\widehat{D}\)
\(\widehat{A}=\widehat{C}\)
mà \(\widehat{A}=60^0\)
nên \(\widehat{C}=60^0\)
\(\widehat{B}=\widehat{D}\)
mà \(\widehat{B}=120^0\)
nên \(\widehat{D}=120^0\)
b: ABCD là hình bình hành
=>\(\widehat{A}=\widehat{C}\)
mà \(\widehat{A}+\widehat{C}=140^0\)
nên \(\widehat{A}=\widehat{C}=\dfrac{140^0}{2}=70^0\)
ABCD là hình bình hành
=>\(\widehat{A}+\widehat{B}=180^0\)
=>\(\widehat{B}=180^0-70^0=110^0\)
ABCD là hình bình hành
=>\(\widehat{B}=\widehat{D}\)
mà \(\widehat{B}=110^0\)
nên \(\widehat{D}=110^0\)
c: ABCD là hình bình hành
=>\(\widehat{B}+\widehat{A}=180^0\)
mà \(\widehat{B}-\widehat{A}=40^0\)
nên \(\widehat{B}=\dfrac{180^0+40^0}{2}=110^0;\widehat{A}=\dfrac{180^0-40^0}{2}=70^0\)
ABCD là hình bình hành
=>\(\widehat{A}=\widehat{C};\widehat{B}=\widehat{D}\)
=>\(\widehat{C}=70^0;\widehat{D}=110^0\)
b: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Suy ra: FA//CE
Hạ K vuông góc DC tại N =>EM//KN﴾1﴿ Vì F dx K qua BC =>FC=CK =>2 góc FCB=FCK Mà A=C=60 độ =>góc KCN=60 Xét 2 tam giác vuông EMD và KNC có: ED=CK﴾cùng Bằng FC﴿ D= góc KCL => tam giác EMD=KNC ﴾cạnh huyền góc nhọn ﴿ =>EM=KN﴾2﴿ Từ ﴾1﴿ và ﴾2﴿ =>EKNM là HBH =>EK//DC =>EK//AB
hạ K vuông góc DC tại N => EM//KN(1)
vì F dx K qua BC = > FC = CK
=> 2 góc FCB = FCK
mà A=C + 60 độ => góc KCN = 60
xét 2 tam giác vuông EMD và KNC có :ED = CK ( cùng bằng FC ) D = góc KCL
=> tam giác EMD = KNC ( cạnh huyền góc nhọn )
=> EM = KN (2) từ (1) và (2)
=> EKNM là HBH => EK//DC=>EK//AB
a) MN là đường trung bình tam giác HDC \(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}DC=AB\\MN//DC//AB\end{cases}}\)=> MNAB là hình bình hành
b) Có \(\hept{\begin{cases}MN//DC\\AD\perp DC\end{cases}\Rightarrow MN\perp AD}\)
Mà \(DN\perp AM\)nên N là trực tâm tam giác AMD \(\Rightarrow AN\perp DM\)
Mà \(BM//AN\)(vì ANMB là hình bình hành) nên \(BM\perp DM\Rightarrow\widehat{BMD}=90^0\)
c) \(S_{ABCD}=\frac{\left(AB+DC\right).AD}{2}=\frac{\left(\frac{DC}{2}+DC\right).AD}{2}=\frac{\left(8+16\right).6}{2}=72\left(cm^2\right)\)
A B C D H N M
a, có M;N lần lượt là trđ của HC; HD (gt) xét tg DHC
=> MN là đtb của tg DHC (đn)
=> MN // DC mà DC // AB (do ABCD là hình thang) => AB // MN
MN = 1/2DC (tc) mà DC = 2AB => AB = 1/2DC => MN = AB
=> ABMN là hình bình hành (dấu hiệu)
b, MN // DC (câu a) DC _|_ AD (gt)
=> MN _|_ AD ; DN _|_ AM (gt) ; xét tg DAM
=> N là trực tâm của tg DAM
=> AN _|_ DM mà AN // BM do ABMN là hình bình hành (câu a)
=> DM _|_ BM (TC)
=> ^BMD = 90
c, có CD thì tính đc AB xong tính bth
a Xét tứ giác DEBF có
BE//DF
BE=FD
Do đó; DEBF là hình bình hành
=>DB cắt EF tại trung điểm của mỗi đường(1)
b: Vì ABCD là hình bình hành
nên AC cắt BD tại trung điểm của mõi đường(2)
Từ (1), (2) suy ra AC,BD,EF đồng quy
=>E,O,F thẳng hàng
a) Ta thấy : BAD = BCD = 120°( tính chất)
Mà AB//CD ( ABCD là hình bình hành)
=> ABC + BCD = 180°
=> ABC = ADC = 60°