K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

Giải thích các bước giải:

Gọi AH là đg cao từ A xuống cạnh CD

a, diện h hbh=AHxCD=12.16=192 

b,M trung điểm AB nên AM=16:2=8cm

vì ABCD là hbh nên đường cao từ D xuống AB= AH=12cm

do đó diện tích tam giác ADM=12x8:2=48

c, Xét tam giác ANM và CND

vì AM//CD nên CDAM=DNMN=12CDAM=DNMN=12 suy ra DN=2NM

d, vì DN=2NM nên chiều cao từ D xuống AM = 3 từ N xuống AM=> chiều cao từ N xuống AM=12:3=4cm

suy ra diện tích AMN=AMx4:2=16

16 tháng 3 2015

Bạn tham khảo ở đây nhé!

http://diendan.hocmai.vn/showthread.php?t=234169

2 tháng 2 2018

a) Ta có AB // CD (gt)

Suy ra AM // CP    (1)

Lại có AM = AB/2; CP = CD/2    (2)

Từ (1) và (2) suy ra AMCP là hình bình hành

Suy ra AP // CM hay ES // FR.

Tương tự ta cũng chứng minh được tứ giác BQDN là hình bình hành nên BQ // DN. Suy ra EF // RS.

Vậy tứ giác EFRS là hình bình hành

b) Đặt PS = x. Suy ra CR = 2x (tính chất đường trung bình)

Từ đó suy ra RF = ES = AE = 2x

Suy ra: ES = 2AP/5 => SEFRS = 2SAMCP/5

Vì SAMCP = SABCD/2 nên SEFRS = SABCD/2

a) Gọi H là chân đường vuông góc kẻ từ A xuống CD

Theo đề bài, ta có: AH=3(cm)

Xét hình bình hành ABCD có AH là đường cao ứng với cạnh CD(gt)

nên \(S_{ABCD}=AH\cdot CD=4\cdot3=12\left(cm^2\right)\)