K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2015

(Tự vẽ hình nhen)

a,Ta có ABCD là hbh => gADC=gABC(1)

BM là phân giác gABC(gt)=>gABM=1/2gABC(2)

DN là phân giác gADC(gt)=>gMDN=1/2gADC(3)

Từ(1),(2) và (3)=> gNDM=gNBM

Mặt khác NB//DM(t/c hbh)=> BMDN là hbh

b,Gọi O là giao điểm của AC và BD(4)

=>O là trung điểm của BD(t/c hbh)

Ta lại có BMDN là hbh(câu a)=>O cũng là trung điểm của MN(5)

Từ (4) và (5)=>AC,BD,MN đồng quy tại O

29 tháng 6 2019

a) Xét hai tam giác vuông ADH và BCK có:

AD = BC (tính chất hình bình hành)

B1ˆ=D2ˆB1^=D2^ (slt, AB // CD)

Vậy: ΔADH=ΔBCK(ch−gn)ΔADH=ΔBCK(ch−gn)

⇒⇒ AH = CK (1)

Chứng minh tương tự ta được: ΔABK=ΔCDH(ch−gn)ΔABK=ΔCDH(ch−gn)

⇒⇒ AK = CH (2)

Từ (1) và (2) suy ra: AHCK là hình bình hành

b) O là giao điểm của AC và BD thì O là trung điểm của AC (tính chất đường chéo hình bình hành)

AHCK là hình bình hành (cmt) ⇒⇒ HK đi qua trung điểm O của đường chéo AC

Vậy H, O, K thẳng hàng.

A B D C O H K

P.s:Mìh vẽ hình hơi xấu ;))

26 tháng 12 2020
Giúp mình đi mọi người
3 tháng 11 2016

A B C D E F M N K

a) Ta có :

Góc BAD + Góc ADC = 180o

\(\Rightarrow\frac{1}{2}\widehat{BAD}+\frac{1}{2}\widehat{ADC}=\frac{1}{2}.180^o\)

\(\Rightarrow\widehat{MAD}+\widehat{MDA}=90^o\)

Xét \(\Delta MAD\)có \(\widehat{MAD}+\widehat{MDA}=90^o\Rightarrow\widehat{AMD}=90^o\)

\(\Rightarrow\widehat{AMD}=\widehat{AMF}=\widehat{DME}=90^o\)( SỬ dụng góc kề bù để suy ra )

Xét \(\Delta AMD\)và \(\Delta AMF:\)

\(\widehat{DAM}=\widehat{FAM}\)( AE là phân giác \(\widehat{A}\))

Chung cạnh AM

\(\widehat{AMD}=\widehat{AMF}\)( cmt )

\(\Rightarrow\Delta AMD=\Delta AMF\left(g.c.g\right)\)

\(\Rightarrow M\)là trung điểm DF

Xét \(\Delta AFM\)và \(\Delta EDM\), có :

\(\widehat{AFM}=\widehat{EDF}\)( 2 góc so le trong vì AF//DE )

\(FM=DM\)( M là trung điểm DF )

\(\widehat{FMA}=\widehat{DME}=90^o\)

\(\Rightarrow\Delta AMF=\Delta EMD\left(g.c.g\right)\)

\(\Rightarrow\)M là trung điểm AE

Tứ giác ADEF có hai đường chép vuông góc với nhau tại trung điểm mỗi đường nên là hình thoi.

b) Từ N kẻ đường thằng song song với AB ( CD ); cắt BC tại K.

Có \(\widehat{FBN}=\widehat{BNK}\)( So le trong )

Mà \(\widehat{FBN}=\widehat{KBN}\)( BN là phân giác góc B )

\(\Rightarrow\widehat{BNK}=\widehat{KBN}\) nên tam giác KBN cân tại K; hay BK = NK

Tương tự chứng minh tam giác CNK cân tại K; hay NK = KC

\(\Rightarrow BK=KC;\)hay K là trung điểm BC

\(AB\text{//}CD\Rightarrow FB\text{//}EC\)

\(\Rightarrow FBCE\)là hình thang

Xét hình thang FBCE có :

\(NK\text{//}FB\text{//}FC\)

\(K\)là trung điểm BC

\(\Rightarrow NK\)là đường trung bình hình thang, hay N là trung điểm FE, tức N nằm trên EF

Vậy ...

c) \(AB=\frac{3}{2}AD\) nên đặt \(AD=2\alpha;AB=3\alpha\)

Ở phần a đã chứng minh \(\Delta AMD=\Delta AMF\Rightarrow AD=AF=2\alpha\)(2 cạnh tương ứng )

Xét tam giác EAF :  N là trung điểm FE ; M là trung điểm AE nên MN là đường trung bình

\(\Rightarrow MN=\frac{1}{2}AF=\frac{1}{2}\left(2\alpha\right)=\alpha\)

Vì góc A = 120o nên \(\widehat{FAM}=\frac{1}{2}.\widehat{A}=\frac{120^o}{2}=60^o\)

\(\Rightarrow\widehat{MFA}=90^o-\widehat{FAM}=30^o\)

Xét tam giác AMF vuông tại M có 2 góc nhọn là 60o và 30o \(\Rightarrow AM=\frac{1}{2}FA=\frac{1}{2}\left(2\alpha\right)=\alpha\)(Mình chứng minh bên dưới 

Mà \(AM=ME\Rightarrow ME=\alpha\)

Do ABCD là hình bình hành nên góc BCD cũng bằng góc A và bằng 120o

\(\Rightarrow\widehat{BCN}=\frac{1}{2}\widehat{C}=\frac{120^o}{2}=60^o\)

\(\Rightarrow\widehat{CBN}=90^o-\widehat{BCN}=30^o\)

Xét tam giác vuông BNC vuông tại N có 2 góc nhọn là 30o và 60o nên \(NC=\frac{1}{2}BC=\frac{1}{2}AD=\frac{1}{2}\left(2\alpha\right)=\alpha\)

AFED là hình thoi nên \(FA=DE=2\alpha\)

Lại có \(CD=AB=3\alpha\)

\(\Rightarrow CD-DE=EC=3\alpha-2\alpha=\alpha\)

Tứ giác \(MNCE\)có 4 cạnh bằng nhau và bằng \(\alpha\) nên là hình thoi.

Vậy ...

3 tháng 11 2016

À quên :) Cách chứng minh một tam giác vuông có một góc 60 độ / 30 độ thì cạnh góc vuông nhỏ hơn sẽ bằng nửa cạnh huyền.

S P Q J 60 30

Xét tam giác SQP vuông tại Q và \(\widehat{P}=60^o;\widehat{S}=30^o\)

Trên tia đối của QP, lấy J sao cho JQ=QP.

Xét \(\Delta SJP\)có \(SQ\)vừa là đường cao, vừa là trung tuyến nên là tam giác cân, lại có  \(\widehat{S}=60^o\)nên là tam giác đều.

\(\Rightarrow JP=SQ\)

\(\Rightarrow2.QP=SQ\)

\(\Rightarrow SQ=\frac{1}{2}SQ\)

Vậy ...

5 tháng 11 2016

a ) Ta có :

Góc BAD + ADC = 180o

=> \(\frac{1}{2}gocBAD+\frac{1}{2}gocADC=\frac{1}{2}.180^o\)

=> \(gocMAD+gocMDA=90^o\)

=> Xét \(\Delta MAD\)có \(gocMAD+gocMDA=90^o\Rightarrow gocAMD=90^o\)

=> Sử dụng góc kề bù ta suy ra \(gocAMD=gocAMF=gocDME=90^o\)

Xét \(\Delta AMD=\Delta AMF\left(g.c.g\right)\)

\(gocDAM=gocFAM\)( AE là phân giác góc A )

Chung cạnh AM

\(gocAMD=gocAMF\left(cmt\right)\)

=> \(\Delta AMD=\Delta AMF\left(g.c.g\right)\)

=> M là trung điểm DF

Tớ chỉ làm được tới đây

10 tháng 12 2016

Có bao giờ bạn tự hỏi mình đánh làm cái thế này