K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

bạn tự phác hình ra nhé

a) Xét tứ giác AHCK có AH _|_ BD và CK _|_ BD => AH // CK

xét tam giác AHD và tam giác CKB có:

\(\widehat{H}=\widehat{K}=90^o\)

AD=BC

\(\widehat{ADH}=\widehat{CBK}\)

\(\Rightarrow\Delta AHD=\Delta CKB\)(cạnh huyền-góc nhọn)

=> AH=CK

vậy tứ giác AHCK là hình bình hành

b) xét hình bình hàng AHCK, trung điểm O của đường chéo HK cũng là trung điểm của đường chéo AC (tính chất đường chéo của hình bình hành) do đó 3 điểm A,O,C thẳng hàng (đpcm)

23 tháng 7 2020

a) Xét ΔAHD và ΔCKB có:
AD = BC (gt)
góc ADB = góc DBC ( SLT).
=> ΔAHD = ΔCKB (cạnh huyền- góc nhọn)
=> BH = CK( hai cạnh tương ứng)
Lấy M trung điểm BD
=> MD = MB
=> MD - DH = MB - BK
=> MH = MK (vì M Trung điểm HK)
Vì ABCD là hình bình hành nên AC cắt BD tại trung điểm M.
Hoặc M là Trung điểm AC và M trung điểm HK.
=> Tứ giác AKCH là hình bình hành (đpcm)

15 tháng 11 2018

nhanh 3 k miễn phí mai nhớ cổ vũ đội bóng việt nam nha

b) Xét hai tam giác vuông AHD và CKB có:
AD=BC
góc ADB=góc DBC (so le trong).
=> tam giác AHD=tam giác CKB    (ch-gn)
=> BH=CK( hai cạnh tương ứng)
Lấy M trung điểm  BD , nên MD=MB => MD-DH=MB-BK=> MH=MK, nên M Trung điểm HK
Vì ABCD là hình bình hành nên  AC cắt BD tại trung điểm M.
Hay M là Trung điểm AC, mà M trung điểm HK.
Nên AKCH là hình bình hành.

Bài 1: Cho tam giác ABC vuông tại A, AB=5; BC=13. Qua trung điểm M của AB vẽ 1 đường thẳng song song AC cắt BC tại N. Tính độ dài MNBài 2: Cho tứ giác ABCD, có AB=a, CD=b. Gọi E và F lần lượt là trung điểm của AD và Bc. CMR: EF<=\(\frac{a+b}{2}\)Bài 3: Cho tam giác ABC, đường trung tuyến AD. Gọi M là 1 điểm trên cạnh Ac sao cho AM=\(\frac{1}{2}\)MC. Gọi O là giao điểm của BM và AD. CMR: a, O là trung điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A, AB=5; BC=13. Qua trung điểm M của AB vẽ 1 đường thẳng song song AC cắt BC tại N. Tính độ dài MN

Bài 2: Cho tứ giác ABCD, có AB=a, CD=b. Gọi E và F lần lượt là trung điểm của AD và Bc. CMR: EF<=\(\frac{a+b}{2}\)

Bài 3: Cho tam giác ABC, đường trung tuyến AD. Gọi M là 1 điểm trên cạnh Ac sao cho AM=\(\frac{1}{2}\)MC. Gọi O là giao điểm của BM và AD. CMR: a, O là trung điểm của AD

                b, OM=\(\frac{1}{4}\)BM

Bài 4: Cho hình bình hành ABCD trong đó có góc A tù và AB>=BC. Qua C dựng đường vuông góc với BC rồi lấy các điểm M và N sao cho CM=CN=CB. Qua c dựng đường vuông góc với DCD rồi lấy các điểm P và Q sao cho CP=CQ=CD.(M,P nằm cùng 1 nửa mặt phẳng với D có bờ BC. CMR: a, Tứ giác MPNQ là hình bình hành

                                           b, Tam giác ADC= tam giác MCP

                                           c, AC vuông góc với MP

Bài 5: Cho hình bình hành ABCD. Gọi H và K theo thứ tự là hình chiếu của A và C trên đường thẳng BD. CMR:

a, Cm: Tứ giác AHCK là hình bình hành

b, Gọi M là giao điểm của AK và BC, N là giao điểm của CH và AD. Cm: AN=CM

c, Gọi O là trung điểm của HK. Cm: M,N,O thẳng hàng

(Vẽ hình+ giải cụ thể)

Thanks các bạn trước nha

 

0
27 tháng 9 2019

cần câu c thôi giúp vs