K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2022

Tứ giác ABCD là hình bình hành (gt).

\(\Rightarrow AB//DC;AD//BC\) (T/c hình bình hành).

Xét tam giác MKD và tam giác MAB:

\(\widehat{MKD}=\widehat{MAB}\left(AB//DC;K\in DC\right).\)

\(\widehat{KDM}=\widehat{ABM}\left(AB//DC;K\in DC\right).\)

\(\Rightarrow\Delta MKD\sim\Delta MAB\left(g-g\right).\)

Xét tam giác MAD và tam giác MNB:

\(\widehat{MAD}=\widehat{MNB}\left(AD//BC;N\in BC\right).\)

\(\widehat{ADM}=\widehat{NBM}\left(AD//BC;N\in BC\right).\)

\(\Rightarrow\Delta MAD\sim\Delta MNB\left(g-g\right).\)

10 tháng 3 2022

A B C D K M N

7 tháng 7 2019

a. AE = AF: 
Δ ABE = Δ ADF vì: 
AB = AD ( cạnh hình vuông) 
\(\widehat{DAF}=\widehat{BAE}\)( cùng phụ với DAE^) 
=> AE = AF 

b. Tứ gaíc EGFK là hình thoi 
EG // AB và AB // FK => EG // FK (*)

=>  \(\widehat{GEF}=\widehat{KFE}\)(1) ( so le trong) 
cm câu a) có AF = AE => trung tuyến AI củng là đường trung trực của EF => AI \(\perp\)EF 
theo giả thiết: IE = IF (2) 
(1) và (2) => Δ IKF = Δ IGE => FK = EG (**) 
(*) và (**) => EGFK là hình bình hành 
vì AI là trung trực của EF => EG = FG 
vậy hình bình hành EGFK là hình thoi. 

c. tam giác FIK đồng dạng tam giác FCE 
Δ FIK ~ Δ FEC vì: 
\(\widehat{F}\)chung 
\(\widehat{KIF}=\widehat{ECF}\) = 1v 

d. EK = BE + DK và khi E chuyển động trên BC thì chu vi tam giác ECK không đổi 
gọi cạnh hình vuông là a, ta có: 
CV = EC + CK + EK = (BC - BE) + (CD - DK) + (BE + DK) = BC + CD = 2a không đổi

5 tháng 12 2024

MỌI NGƯỜI GIÚP MÌNH CÂU b VỚI Ạ!

qua đỉnh A hình bình hành ABCD vẽ đường thẳng d cắt BD, BC, CD lần lượt tại E, F, G. a. chứng minh rằng EA/EF = EG/EA b. xác định vị trí của đường thẳng d để tích EF.EG nhỏ nhất

15 tháng 11 2023

a, Xét tứ giác MNPB có:

MN//PB (Vì MN//BC và P ϵ BC)

MB//NP (Vì AB//NP và M ϵ AB)

=> Tứ giác MNPB là hbh

b, Ta có:

M là trung điểm AB 

MN//BC

=> MN là đường trung bình của tam giác ABC

=> N là trung điểm AC, MN=BC/2 và MN//BC

Xét 2 tam giác AMN và NPC có

AM=NP (Vì AM=BM, BM=NP)

AN=NC

MN=PC ( Vì MN=BC/2, MN=BP)

=> Tam giác AMN = Tam giác NPC (c.c.c)

 

 

 

28 tháng 4 2019

A B C D E H M N K 1 1 1 2

a)Ta có : \(\widehat{A_1}+\widehat{M_1}=90^o;\widehat{M_1}+\widehat{BMC}=90^o\)\(\Rightarrow\widehat{A_1}=\widehat{BMC}\)

Xét \(\Delta ADM\)và \(\Delta BMC\)có : \(\widehat{A_1}=\widehat{BMC}\)\(\widehat{ADM}=\widehat{BCM}\)

\(\Rightarrow\Delta DAM\approx\Delta CMB\left(g.g\right)\)\(\Rightarrow\frac{AD}{DM}=\frac{CM}{BC}\)hay CM = \(\frac{5}{2}.5=12,5\)

b) \(\Delta AMB\)có EK là tia phân giác nên \(\frac{EA}{EB}=\frac{MA}{MB}\)( 1 )

Mặt khác : \(\widehat{B_1}+\widehat{EKB}=90^o;\widehat{B_1}+\widehat{A_2}=90^o\)nên \(\widehat{A_2}=\widehat{EKB}\)

\(\Delta BEK\approx\Delta BMA\left(g.g\right)\)\(\Rightarrow\frac{EK}{EB}=\frac{MA}{MB}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra EA = EK

c) Ta có : \(\widehat{BMH}=90^o\)nên \(BM\perp AH\)

Xét \(\Delta AHB\)có \(BM\perp AH\)\(HE\perp AB\)nên K là trực tâm \(\Rightarrow AN\perp BH\)

\(\Rightarrow\widehat{ANH}=90^o\)

xét \(\Delta AHN\)và \(\Delta BMH\)có : \(\widehat{ANH}=\widehat{BMH}=90^o;\widehat{MHN}\left(chung\right)\)

\(\Rightarrow\)\(\Delta AHN\approx\Delta BHM\left(g.g\right)\)\(\Rightarrow\)\(\frac{MH}{BH}=\frac{HN}{AH}\)hay \(\frac{MH}{HN}=\frac{BH}{AH}\)

Xét \(\Delta MHN\)và \(\Delta AHB\)có  : \(\widehat{MHN}\left(chung\right);\frac{MH}{HN}=\frac{BH}{AH}\)

\(\Rightarrow\)\(\Delta HMN\approx\Delta HBA\left(g.g\right)\) \(\Rightarrow\)\(\widehat{HMN}=\widehat{HBA}\)

Mà EA = EK nên \(\widehat{A_2}=45^o\) \(\Rightarrow\widehat{ABH}=90^o-\widehat{A_2}=45^o\)hay \(\widehat{HMN}=45^o\)

Ta có : \(\widehat{EMN}=180^o-\widehat{AME}-\widehat{HMN}=180^o-45^o-45^o=90^o\)

\(\Rightarrow EM\perp MN\)

Mặt khác : ME là tia phân giác \(\widehat{AMB}\) nên MN là tia phân giác \(\widehat{BMH}\)

27 tháng 10 2021

b: Xét ΔADK vuông tại K và ΔCBH vuông tại H có 

AD=CB

\(\widehat{ADK}=\widehat{CBH}\)

Do đó: ΔADK=ΔCBH

Suy ra: DK=BH

Xét tứ giác BKDH có 

DK//BH

DK=BH

Do đó: BKDH là hình bình hành

27 tháng 10 2021

Biết hết không ạ em đang cần gấp.

 

b: Xét ΔIAK và ΔIBC có

góc IAK=góc IBC

góc AIK=góc BIC

=>ΔIAK đồng dạng với ΔIBC

=>IK/IC=IA/IB=1/2

=>CI=2/3CK

Xét ΔCAA' có

CK là trung tuyến

CI=2/3CK

=>I là trọng tâm