K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

a) tg ABG ~ tg ACE vì là 2 tg vuông có chung góc nhọn 
b) Từ a) => AB/AC=AG/AE=>AB.AE=AC.AG 
Ta có tg ACF~ tg CBG (^C=^A,^F=^G=90) 
=>AF/CG=AC/CB =>AF.CB=AC.CG 
Mà CB=AD =>AF.AD=AC.CG 
=>AB.AE+AD.AF=AC.AG+AC.CG=AC^2 
c) Có AB.AE=AC.AG=AC.2CG=2.AD.AF 
=> dpcm 

13 tháng 7 2019

a)     Ta có: A I E ^ = A J E ^ = 90 0  nên tứ giác AIEJ nội tiếp.

E M C ^ = E J C ^ = 90 0  nên tứ giác CMJE nội tiếp.

Xét tam giác Δ A E C   v à   Δ I E M , có

A C E ⏜ = E M I ⏜  ( cùng chắn cung JE của đường tròn ngoại tiếp tứ giác CMJE).

E A C ⏜ = E I M ⏜  ( cùng chắn cung JE của đường tròn ngoại tiếp tứ giác AIEJ).

Do đó hai tam giác  Δ A E C   ~   Δ I E M  đồng dạng

⇒ A E E I = E C E M ⇒ E A . E M = E C . E I (đpcm)

31 tháng 12 2021
10 tháng 9 2019

b)  Ta có I E M ⏜ = A E C ⏜ ⇒ A E I ⏜ = C E M ⏜ .

Mặt khác A E I ⏜ = A J I ⏜  ( cùng chắn cung IJ), C E M ⏜ = C J M ⏜  ( cùng chắn cung CM). Suy ra C J M ⏜ = A J I ⏜ .  Mà I, M nằm hai phía của đường thẳng AC nên C J M ⏜ = A J I ⏜  đối đỉnh suy ra I, J, M thẳng hàng.

Tương tự, ta chứng minh được H, M, K thẳng hàng.

Do tứ giác CFMK nội tiếp nên C F K ⏜ = C M K ⏜ .

Do tứ giác CMJE nội tiếp nên J M E ⏜ = J C E ⏜ .

Mặt khác E C F ⏜ = 90 0 ⇒ C F K ⏜ = J C E ⏜  ( vì cùng phụ với A C F ⏜ ).

Do đó C M K ⏜ = J M E ⏜ ⇒ J M K ⏜ = E M C ⏜ = 90 0  hay  I J ⊥ H K

20 tháng 5 2016

a) có 2 góc vg cùng nhìn 1 cạnh

b)EAC=ACO

tam giác AOC cân tại O

=>.......................

c) theo câu a =>AFE=ADE

từ câu b =>CAB=CAE

CAB=BCD

=>...........................

d) đang suy nghĩ

12 tháng 4 2021

_undefined

16 tháng 7 2020

E 1 A H O B C F d

a. Ta có: \(OC\perp d\)(tính chất tiếp tuyến)

\(AE\perp d\) (gt)

\(BF\perp d\) (gt)

Suy ra : OC // AE // BF

Mà OA = OB (= R)

Suy ra: CE = CF ( tính chất đường thẳng song song cách đều )

b. Ta có: AE // OC

\(\Rightarrow\widehat{OCA}=\widehat{EAC}\)( hai góc so le trong ) ( 1 )

Ta có : \(OA=OC\left(=R\right)\)

\(\Rightarrow\Delta OAC\)cân tại O \(\Rightarrow\widehat{OCA}=\widehat{OAC}\)( 2 )

Từ (1)(2) suy ra : \(\widehat{EAC}=\widehat{OAC}\)

Vậy AC là tia phân giác của góc OAE hay AC là tia phân giác của góc BAE

c. Tam giác ABC nội tiếp trong đường tròn (O) có AB là đường kính nên góc (ACB) = 90o

Tam giác ABC vuông tại C có \(CH\perp AB\)

Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:

CH2 = HA . HB     (3)

Xét hai tam giác ACH và ACE, ta có :

\(\widehat{AEC}=\widehat{AHC}=90^o\)

CH = CE (tính chất đường phân giác)

AC chung

Suy ra : \(\Delta ACH=\Delta ACE\) (cạnh huyền, cạnh góc vuông)

Suy ra: AH = AE     (4)

Xét hai tam giác BCH và BCF, ta có :

\(\widehat{AHC}=\widehat{BFC}=90^o\)

CH = CF (= CE)

BC chung

Suy ra:  \(\Delta BCH=\Delta BCF\) (cạnh huyền, cạnh góc vuông)

Suy ra: BH = BF     (5)

Từ (3), (4) và (5) suy ra: CH2 = AE . BF