K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Vì ABCD là hình bình hành 

=> AB = CD ( tính chất) 

AD//BC 

AB//CD 

AD = BC ( tính chất) 

BAD = BCD ( tính chất) 

Vì E là trung điểm AD 

=> AE = ED 

Vì F là trung điểm BC 

=> BF = FC 

Mà AD = BC 

AE = ED = BF = FC

Xét ∆ABE và ∆FCD ta có : 

AB = CD 

AE = BF (cmt)

BAD = FCD ( cmt)

=> ∆ABE = ∆FCD (c.g.c)

b) Vì E\(\in\)AD 

\(\in\)BC 

Mà AD//BC 

=> ED//BF 

Mà ED = BF ( cmt)

=> EBFD là hình bình hành ( dấu hiệu nhận biết) 

c) Vì ABCD là hình bình hành 

=> AC và BD là 2 đường chéo cắt nhau tại trung điểm mỗi đường 

Hay AC và BD cắt nhau tại trung điểm BD (1)

Vì EBCD là hình bình hành 

=> BD và FE là 2 đường chéo cắt nhau tại trung điểm mỗi đường 

Hay FE và BD cắt nhau tại trung điểm BD (2)

Từ (1) và (2) => AC , BD , FE cắt nhau tại trung điểm BD 

=> AC,BD ,FE đồng quy

12 tháng 10 2019

A B D C E F O

a)tứ giác ABCD có:BF//ED(vì BC//AD) vàBF=ED(=1/2BC=1/2AD) =>DEBF là hbh.

b)gọi O là giao của 2 đường chéo BD, AC của hbh ABCD.

do đó O là trung điểm BD và AC.(1)

Lại có DEBF là hbh(cmt) => EF giao BD tại trung điểm O của BD.(2)

Từ (1) và(2) suy ra BD,AC và EF đòng quy tại trung điểm O của m,ỗi đường.

29 tháng 4 2020

a ) Do ABCD là hình bình hành nên AB=CD và AD=BC

Xét \(\Delta ABE\) và \(\Delta CDF\) có : 

\(AB=CD\)

\(AE=\frac{1}{2}AD=\frac{1}{2}BC=CF\)

\(\widehat{BAE}=\widehat{DCF}\)

Do đó hai tam giác trên bằng nhau

b,

Từ phần a suy ra \(BE=DF\)

Tứ giác DEBF có 2 cặp cạnh đối BE=DF và DE=BF nên DEBF là hình bình hành

c,

Do ABCD là hình bình hành nên AC và BD là hai đường chéo cắt nhau tại trung điểm mỗi đường

DEBF cũng là hình bình hành nên BD và FE là hai đường chéo cắt nhau tại trung điểm mỗi đường

Do đó AC,DB,FE đồng quy tại O là trung điểm mỗi đường

27 tháng 11 2024

Không đc đâu

15 tháng 12 2014

a) Tứ giác DEBF là hình bình hành vì có 2 cạnh đối // và bằng nhau

b) Vì DEBF là hình bình hành nên EF và BD giao nhau tại trung điểm của BD

    Vì ABCD cũng là hình bình hành nên AC và BD cũng giao nhau tại trung điểm của BD

=> AC,BD, EF đồng quy

c) Gọi O là giao điểm của AC và BD

Tam giác ABD có M là trọng tâm=> ME=\(\frac{1}{3}\)DE

Chứng minh tương tự trong tam giác BCD => NF=\(\frac{1}{3}\)BF

mà DE=BF( do DEBF là hình bình hành) => ME=NF và có ME//NF (do DE//BF)=> EMFN là hình bình hành

Mình chỉ trình bày ngắn gọn để bạn hiểu hướng giải bài thôi!!! Khi trình bày vào vở bạn phải trình bày chi tiết ra chứ đừng có trình bày như mình nha!!

 

 

 

17 tháng 10 2023

a) Tam giác ABE= tam giác CDF

=> EB=DF

b) Ta có: 

\(\widehat{ABE}=\widehat{FCD}\)

\(\Rightarrow\widehat{EDF}=\widehat{EBF}=\widehat{BEA}\)

=> EB//CD mà ED//BF

=> EBFD là h.b.h

c) Gọi K là trung điểm EF

=> K là trung điểm AC, BD, EF

=> AC, BD, EF đồng quy tại K