K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2015

b)

AB // DG suy ra AE / AG = BE / BD

AD // BC suy ra AE / AK = DE / BD

Suy ra AE / AG + AE / AK = BE /BD + DE / BD = BD / BD = 1

Chia 2 vế cho AE

1 / AG + 1 / AK = 1/  AE

15 tháng 4 2015

a) AB // CG suy ra AE / EG = BE / ED

AD // BC suy ra EK / AE = BE / ED

Suy ra AE / EG = EK / AE

Suy ra AE^2 = EK.EG

 

1 tháng 2 2018

A B D C E G K a b

a) Vì ABCD là hình bình hành ( gt )

Và K thuộc BC nên

AD // BK Theo hệ quả của định lý Ta-let ta có :

\(\frac{EK}{AE}=\frac{EB}{ED}=\frac{AE}{EG}\Rightarrow\frac{EK}{AE}=\frac{AF}{EG}\Rightarrow AE^2=EK.EG\)

b) Ta có :

\(\frac{AE}{EK}-\frac{DE}{DB};\frac{AE}{AG}=\frac{BE}{BD}\)nên

\(\frac{AE}{AK}+\frac{AE}{AG}-\frac{BE}{BD}+\frac{DE}{DB}-\frac{BD}{BD}-1\Rightarrow\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\)

c) bạn tự làm tiếp mỏi tay quá

6 tháng 6 2019

XVGMy6y.png

Giải nốt bài của Pác Hiếu:3

Đặt \(AB=a',AD=b\)

Áp dụng Đ/L Thales vào tam giác ABK,ta có:

\(\frac{BK}{KC}=\frac{AB}{CG}\Rightarrow\frac{a'}{CG}=\frac{BK}{KC}\left(1\right)\)

Áp dụng Đ/L Thales vào tam giác ADG,ta có:

\(\frac{CG}{DG}=\frac{CK}{AD}\Rightarrow\frac{CG}{DG}=\frac{CK}{b}\left(2\right)\)

Nhân vế theo vế của (1);(2) ta có:

\(\frac{BK}{b}=\frac{a'}{DG}\Rightarrow BK\cdot DG=a'b\)  không đổi.

3 tháng 11 2017

a) vì tứ giác ABCD là hình bình hành

=> AB // CD

=>AB // DG

=>EB/ED =  AE/EG (1)

vì ABCD là hình bình hành

=> AD // BC

=> AD // BK

=>AE/EG = EK/AE (2) 

TỪ (1) VÀ (2)

=> AE/EG = EK/AE 

=> AE ^2 = EK . EG (đpcm)

b) vì AB // DG

=> AE/AG = BE/BD 

MÀ AD // BK

=> AE /AK= DE /BD

CỘNG 2 VẾ TRÊN

=> AE/AG  + AE/AK  = BE/BD  + DE/BD  = 1

<=> AE ( 1/AG  + 1/AK  ) = 1

<=> 1/AG  + 1/AK  = AE 1 (đpcm)

c) vì AD // BK

=> BK/AD  = EB/DE  

CÓ AB // DG

=> AB/DG  = BE /DE

=> BK/AD  = AB/DG  

=> BD . DG = AB . AD mà AB, AD là các cạnh của hình bình hành ABCD

=> AB . AD không đổi

=> BK . DG không đổi (đpcm)

16 tháng 3 2015

a) vì tứ giác ABCD là hình bình hành 

=> AB // CD

=>AB // DG

=> \(\frac{EB}{ED}\)\(\frac{AE}{EG}\)                (1)

vì ABCD là hình bình hành

=> AD // BC

=> AD // BK

=>\(\frac{AE}{EG}\)\(\frac{EK}{AE}\)                  (2)

TỪ  (1) VÀ (2) => \(\frac{AE}{EG}\)\(\frac{EK}{AE}\)

=> AE2 = EK . EG              (đpcm)

b) vì AB // DG => \(\frac{AE}{AG}\)\(\frac{BE}{BD}\)

MÀ AD // BK => \(\frac{AE}{AK}\)\(\frac{DE}{BD}\)

CỘNG 2 VẾ TRÊN

=> \(\frac{AE}{AG}\)\(\frac{AE}{AK}\) = \(\frac{BE}{BD}+\frac{DE}{BD}=1\)

<=> AE ( \(\frac{1}{AG}+\frac{1}{AK}\)) = 1

<=> \(\frac{1}{AG}+\frac{1}{AK}\)\(\frac{1}{AE}\)      (đpcm)

c) vì AD // BK => \(\frac{BK}{AD}=\frac{EB}{DE}\)

CÓ AB // DG => \(\frac{AB}{DG}=\frac{BE}{DE}\)

=> \(\frac{BK}{AD}=\frac{AB}{DG}\)

=> BD . DG = AB . AD

mà AB, AD là các cạnh của hình bình hành ABCD => AB . AD không đổi

=> BK . DG không đổi (đpcm)

9 tháng 3 2017

Do AB song song Cd 

=> Áp dụng định lí Ta - lét được \(\frac{AB}{DG}=\frac{AE}{EG}=\frac{BE}{DE}\)

=> AB . EG = DG . AE

Do AD song song BK nên áp dụng định lí Ta lét được

\(\frac{AE}{AK}=\frac{DE}{BD}\)

Do AB sog song với CG nên áp dụng định lí Ta lét được

\(\frac{AE}{AG}=\frac{BE}{BD}\)

=> \(\frac{AE}{AK}+\frac{AE}{AG}=\frac{BE}{BD}+\frac{DE}{BD}=1\)

=>\(\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\)

Ta có \(\frac{BK}{AD}=\frac{AB}{DG}=\frac{BE}{DE}\)

=>\(BK.DG=AB.AD\left(KHÔNG\right)DOI\)

10 tháng 3 2017

bó tay .com

25 tháng 1 2024

a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)

Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)

Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.

b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1

Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED

     ����+��=����+��AE+EKAE=ED+EBED

     ����=����AKAE=DBED (3)

Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE

     ����+��=����+��AE+EGAE=BE+EDBE

     ����=����AGAE=BDBE (4)

Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.

c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.

Suy ra ��=��.����DG=KCAD.CG

Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.

a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)

Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)

Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.

b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1

Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED

     ����+��=����+��AE+EKAE=ED+EBED

     ����=����AKAE=DBED (3)

Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE

     ����+��=����+��AE+EGAE=BE+EDBE

     ����=����AGAE=BDBE (4)

Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.

c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.

Suy ra ��=��.����DG=KCAD.CG

Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.

25 tháng 1 2024

a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)

Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)

Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.

b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1

Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED

     ����+��=����+��AE+EKAE=ED+EBED

     ����=����AKAE=DBED (3)

Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE

     ����+��=����+��AE+EGAE=BE+EDBE

     ����=����AGAE=BDBE (4)

Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.

c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.

Suy ra ��=��.����DG=KCAD.CG

Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.

a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)

Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)

Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.

b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1

Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED

     ����+��=����+��AE+EKAE=ED+EBED

     ����=����AKAE=DBED (3)

Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE

     ����+��=����+��AE+EGAE=BE+EDBE

     ����=����AGAE=BDBE (4)

Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.

c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.

Suy ra ��=��.����DG=KCAD.CG

Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

a) Vì \(ABCD\) là hình bình hành nên \(AB//CD;AD//BC\)

\( \Rightarrow AB//DG;AB//CG;BK//AD;KC//AD\)

Xét tam giác \(DEG\) có \(AB//DG\), theo hệ quả của định lí Thales ta có:

\(\frac{{AE}}{{EG}} = \frac{{EB}}{{ED}}\) (1)

Xét tam giác \(ADE\) có \(BK//AD\), theo hệ quả của định lí Thales ta có:

\(\frac{{EK}}{{AE}} = \frac{{EB}}{{ED}}\) (2)

Từ (1) và (2) suy ra, \(\frac{{AE}}{{EG}} = \frac{{EK}}{{AE}} \Rightarrow A{E^2} = EG.EK\) (điều phải chứng minh).

b) Xét tam giác \(AED\) có:

\(AD//BK \Rightarrow \frac{{AE}}{{AK}} = \frac{{DE}}{{DB}}\)(3)

Xét tam giác \(AEB\) có

\(AB//BK \Rightarrow \frac{{AE}}{{AG}} = \frac{{BE}}{{BD}}\) (4)

Từ (3) và (4) ta được:

\(\frac{{AE}}{{AK}} + \frac{{AE}}{{AG}} = \frac{{DE}}{{BD}} + \frac{{BE}}{{BD}} = \frac{{BD}}{{BD}} = 1\)

Ta có: \(\frac{{AE}}{{AK}} + \frac{{AE}}{{AG}} = 1 \Rightarrow \frac{1}{{AE}} = \frac{1}{{AK}} + \frac{1}{{AG}}\) (chia cả hai vế cho \(AE\)) (điều phải chứng minh).