Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B D C E G K a b
a) Vì ABCD là hình bình hành ( gt )
Và K thuộc BC nên
AD // BK Theo hệ quả của định lý Ta-let ta có :
\(\frac{EK}{AE}=\frac{EB}{ED}=\frac{AE}{EG}\Rightarrow\frac{EK}{AE}=\frac{AF}{EG}\Rightarrow AE^2=EK.EG\)
b) Ta có :
\(\frac{AE}{EK}-\frac{DE}{DB};\frac{AE}{AG}=\frac{BE}{BD}\)nên
\(\frac{AE}{AK}+\frac{AE}{AG}-\frac{BE}{BD}+\frac{DE}{DB}-\frac{BD}{BD}-1\Rightarrow\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\)
c) bạn tự làm tiếp mỏi tay quá
Giải nốt bài của Pác Hiếu:3
Đặt \(AB=a',AD=b\)
Áp dụng Đ/L Thales vào tam giác ABK,ta có:
\(\frac{BK}{KC}=\frac{AB}{CG}\Rightarrow\frac{a'}{CG}=\frac{BK}{KC}\left(1\right)\)
Áp dụng Đ/L Thales vào tam giác ADG,ta có:
\(\frac{CG}{DG}=\frac{CK}{AD}\Rightarrow\frac{CG}{DG}=\frac{CK}{b}\left(2\right)\)
Nhân vế theo vế của (1);(2) ta có:
\(\frac{BK}{b}=\frac{a'}{DG}\Rightarrow BK\cdot DG=a'b\) không đổi.
a) vì tứ giác ABCD là hình bình hành
=> AB // CD
=>AB // DG
=>EB/ED = AE/EG (1)
vì ABCD là hình bình hành
=> AD // BC
=> AD // BK
=>AE/EG = EK/AE (2)
TỪ (1) VÀ (2)
=> AE/EG = EK/AE
=> AE ^2 = EK . EG (đpcm)
b) vì AB // DG
=> AE/AG = BE/BD
MÀ AD // BK
=> AE /AK= DE /BD
CỘNG 2 VẾ TRÊN
=> AE/AG + AE/AK = BE/BD + DE/BD = 1
<=> AE ( 1/AG + 1/AK ) = 1
<=> 1/AG + 1/AK = AE 1 (đpcm)
c) vì AD // BK
=> BK/AD = EB/DE
CÓ AB // DG
=> AB/DG = BE /DE
=> BK/AD = AB/DG
=> BD . DG = AB . AD mà AB, AD là các cạnh của hình bình hành ABCD
=> AB . AD không đổi
=> BK . DG không đổi (đpcm)
a) vì tứ giác ABCD là hình bình hành
=> AB // CD
=>AB // DG
=> \(\frac{EB}{ED}\)= \(\frac{AE}{EG}\) (1)
vì ABCD là hình bình hành
=> AD // BC
=> AD // BK
=>\(\frac{AE}{EG}\)= \(\frac{EK}{AE}\) (2)
TỪ (1) VÀ (2) => \(\frac{AE}{EG}\)= \(\frac{EK}{AE}\)
=> AE2 = EK . EG (đpcm)
b) vì AB // DG => \(\frac{AE}{AG}\)= \(\frac{BE}{BD}\)
MÀ AD // BK => \(\frac{AE}{AK}\)= \(\frac{DE}{BD}\)
CỘNG 2 VẾ TRÊN
=> \(\frac{AE}{AG}\)+ \(\frac{AE}{AK}\) = \(\frac{BE}{BD}+\frac{DE}{BD}=1\)
<=> AE ( \(\frac{1}{AG}+\frac{1}{AK}\)) = 1
<=> \(\frac{1}{AG}+\frac{1}{AK}\)= \(\frac{1}{AE}\) (đpcm)
c) vì AD // BK => \(\frac{BK}{AD}=\frac{EB}{DE}\)
CÓ AB // DG => \(\frac{AB}{DG}=\frac{BE}{DE}\)
=> \(\frac{BK}{AD}=\frac{AB}{DG}\)
=> BD . DG = AB . AD
mà AB, AD là các cạnh của hình bình hành ABCD => AB . AD không đổi
=> BK . DG không đổi (đpcm)
Do AB song song Cd
=> Áp dụng định lí Ta - lét được \(\frac{AB}{DG}=\frac{AE}{EG}=\frac{BE}{DE}\)
=> AB . EG = DG . AE
Do AD song song BK nên áp dụng định lí Ta lét được
\(\frac{AE}{AK}=\frac{DE}{BD}\)
Do AB sog song với CG nên áp dụng định lí Ta lét được
\(\frac{AE}{AG}=\frac{BE}{BD}\)
=> \(\frac{AE}{AK}+\frac{AE}{AG}=\frac{BE}{BD}+\frac{DE}{BD}=1\)
=>\(\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\)
Ta có \(\frac{BK}{AD}=\frac{AB}{DG}=\frac{BE}{DE}\)
=>\(BK.DG=AB.AD\left(KHÔNG\right)DOI\)
a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)
Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)
Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.
b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1
Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED
����+��=����+��AE+EKAE=ED+EBED
����=����AKAE=DBED (3)
Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE
����+��=����+��AE+EGAE=BE+EDBE
����=����AGAE=BDBE (4)
Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.
c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.
Suy ra ��=��.����DG=KCAD.CG
Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.
a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)
Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)
Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.
b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1
Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED
����+��=����+��AE+EKAE=ED+EBED
����=����AKAE=DBED (3)
Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE
����+��=����+��AE+EGAE=BE+EDBE
����=����AGAE=BDBE (4)
Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.
c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.
Suy ra ��=��.����DG=KCAD.CG
Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.
a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)
Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)
Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.
b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1
Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED
����+��=����+��AE+EKAE=ED+EBED
����=����AKAE=DBED (3)
Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE
����+��=����+��AE+EGAE=BE+EDBE
����=����AGAE=BDBE (4)
Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.
c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.
Suy ra ��=��.����DG=KCAD.CG
Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.
a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)
Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)
Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.
b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1
Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED
����+��=����+��AE+EKAE=ED+EBED
����=����AKAE=DBED (3)
Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE
����+��=����+��AE+EGAE=BE+EDBE
����=����AGAE=BDBE (4)
Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.
c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.
Suy ra ��=��.����DG=KCAD.CG
Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.
a) Vì \(ABCD\) là hình bình hành nên \(AB//CD;AD//BC\)
\( \Rightarrow AB//DG;AB//CG;BK//AD;KC//AD\)
Xét tam giác \(DEG\) có \(AB//DG\), theo hệ quả của định lí Thales ta có:
\(\frac{{AE}}{{EG}} = \frac{{EB}}{{ED}}\) (1)
Xét tam giác \(ADE\) có \(BK//AD\), theo hệ quả của định lí Thales ta có:
\(\frac{{EK}}{{AE}} = \frac{{EB}}{{ED}}\) (2)
Từ (1) và (2) suy ra, \(\frac{{AE}}{{EG}} = \frac{{EK}}{{AE}} \Rightarrow A{E^2} = EG.EK\) (điều phải chứng minh).
b) Xét tam giác \(AED\) có:
\(AD//BK \Rightarrow \frac{{AE}}{{AK}} = \frac{{DE}}{{DB}}\)(3)
Xét tam giác \(AEB\) có
\(AB//BK \Rightarrow \frac{{AE}}{{AG}} = \frac{{BE}}{{BD}}\) (4)
Từ (3) và (4) ta được:
\(\frac{{AE}}{{AK}} + \frac{{AE}}{{AG}} = \frac{{DE}}{{BD}} + \frac{{BE}}{{BD}} = \frac{{BD}}{{BD}} = 1\)
Ta có: \(\frac{{AE}}{{AK}} + \frac{{AE}}{{AG}} = 1 \Rightarrow \frac{1}{{AE}} = \frac{1}{{AK}} + \frac{1}{{AG}}\) (chia cả hai vế cho \(AE\)) (điều phải chứng minh).
b)
AB // DG suy ra AE / AG = BE / BD
AD // BC suy ra AE / AK = DE / BD
Suy ra AE / AG + AE / AK = BE /BD + DE / BD = BD / BD = 1
Chia 2 vế cho AE
1 / AG + 1 / AK = 1/ AE
a) AB // CG suy ra AE / EG = BE / ED
AD // BC suy ra EK / AE = BE / ED
Suy ra AE / EG = EK / AE
Suy ra AE^2 = EK.EG