K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: vecto AB-vecto AD

=vecto DA+vecto AB

=vecto DB

-vecto CD-veco BC

=vecto CB-vecto CD

=vecto DC+vecto CB=vecto DB

=>vecto AB+vecto CD=vecto AD-vecto BC

b: \(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CA}+\overrightarrow{AB}=\overrightarrow{CB}\)

\(\overrightarrow{CD}-\overrightarrow{BD}=\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{CB}\)

Do đó: \(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CD}-\overrightarrow{BD}\)

=>\(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}-\overrightarrow{BD}\)

c: \(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{DA}+\overrightarrow{AB}=\overrightarrow{DB}\)

\(\overrightarrow{CB}-\overrightarrow{CD}=\overrightarrow{DC}+\overrightarrow{CB}=\overrightarrow{DB}\)

Do đó: \(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{CB}-\overrightarrow{CD}\)

=>\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)

a: \(\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AC}\right|=2\cdot AC=2\cdot5=10\)

b: \(\left|\overrightarrow{AM}+\overrightarrow{AN}\right|=\left|\dfrac{\overrightarrow{AB}+\overrightarrow{AC}}{2}+\dfrac{\overrightarrow{AD}+\overrightarrow{AC}}{2}\right|\)

\(=\left|\dfrac{3\cdot\overrightarrow{AC}}{2}\right|=\dfrac{3}{2}AC=\dfrac{3}{2}\cdot5=\dfrac{15}{2}=7.5\)

16 tháng 9 2016

bạn ơi E là điểm nào z

 

16 tháng 9 2016

1. mh k rõ đề

2. CD - CA + CB = 0

Ta có  Vế Trái <=> CD+AC+CB

<=> (AC+CD)+CB

<=> AD+CB (1)

Vì AD=BC

=> ( 1)<=> BC+CB=0 ( đ p cm)

( vì k có dấu véc tơ nên mh ghi AD là vec tơ AD)

15 tháng 7 2017

giả thiết không có điểm S, sao làm câu b được.

15 tháng 7 2017

a) I là trung điểm

nên vectoAB+ vectoAC= 2AI (1)

vectoAD+ vectoAE=2AI (2)

Từ (1) và (2) suy ra câu a

b) vecto AB+ vectoAC= 2AI(cmt

vectoAD+ vectoAE= 2AI(cmt

vectoAS=vectoAB+ vectoAD+ vectoAC+ vectoAE

tương đương: vectoAS=(vectoAB+ vectoAC)+ (vectoAD+ vectoAE)

vectoAS=2AI+2AI= 4AI

\(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\)

\(\overrightarrow{AD}-\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DC}=\overrightarrow{AC}\)

Do đó: \(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AD}-\overrightarrow{CD}\)

=>\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}-\overrightarrow{BC}\)

NM
4 tháng 12 2020

A B C D

ta có \(\overrightarrow{BC}\cdot\left(2\overrightarrow{\cdot AD}-\overrightarrow{AB}\right)=2\cdot\overrightarrow{BC}\cdot\overrightarrow{AD}-\overrightarrow{BC}\cdot\overrightarrow{AB}=2a^2\)

(Do BC và AD cùng hướng, BC và AB vuông góc với nhau)

21 tháng 10 2021

a: \(\left|\overrightarrow{OA}-\overrightarrow{OC}\right|=\left|\overrightarrow{CA}\right|=AC=a\sqrt{2}\)

b: \(\left|\overrightarrow{AB}-\overrightarrow{CD}\right|=2\cdot AB=2a\)

NM
3 tháng 9 2021

ta có \(\left(\overrightarrow{AB}+\overrightarrow{AC}\right)^2=AB^2+2\overrightarrow{AB}.\overrightarrow{AC}+AC^2=AB^2+AC^2=5^2+12^2=13^2\)

Vậy \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\sqrt{13^2}=13\)

còn \(\overrightarrow{BA}-\overrightarrow{CB}=\overrightarrow{BA}-\overrightarrow{CA}+\overrightarrow{BA}=2\overrightarrow{BA}-\overrightarrow{CA}\)

Mà \(\left(2\overrightarrow{BA}-\overrightarrow{CA}\right)^2=4BA^2-4\overrightarrow{BA}.\overrightarrow{CA}+CA^2=4BA^2+CA^2=4.5^2+12^2=244\)

vậy \(\left|\overrightarrow{BA}-\overrightarrow{CB}\right|=\sqrt{244}\)