K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2024

loading... 

1) Xét hai tam giác vuông: ∆ABH và ∆ACE có:

∠A chung

∆ABH ∽ ∆ACE (g-g)

loading... ⇒ AB.AE = AH.AC

b) Sửa đề: ∆IBE ∽ ∆ICH

∆ACE vuông tại E

⇒ ∠BCE + ∠BCA = 90⁰

⇒ ∠BCE + ∠ICH = 90⁰

∆BCE vuông tại E

⇒ ∠BCE + ∠CBE = 90⁰

⇒ ∠BCE + ∠IBE = 90⁰

Mà ∠BCE + ∠ICH = 90⁰ (cmt)

⇒ ∠IBE = ∠ICH

Xét ∆IBE và ∆ICH có:

∠BIE = ∠CIH (đối đỉnh)

∠IBE = ∠ICH (cmt)

⇒ ∆IBE ∽ ∆ICH (g-g)

c) Do ABCD là hình bình hành (gt)

⇒ AB // CD và AD // BC

⇒ AB // CQ

Theo hệ quả của định lý Thales

loading...

Do AD // BC (cmt)

⇒ AK // BC

Theo hệ quả của định lý Thales

loading... Từ (1) và (2)

loading... ⇒ HB.HB = HK.HQ

Hay BH.BH = HK.HQ

a: Xét ΔAEC vuông tại E và ΔAHB vuông tại H có

góc EAC chung

=>ΔAEC đồng dạng với ΔAHB

=>AE/AH=AC/AB

=>AE*AB=AC*AH

b: Xét ΔCBH vuông tại H và ΔACF vuông tại F có

góc BCH=góc CAF

=>ΔCBH đồng dạng với ΔACF

 

a: Xét ΔABH vuông tại H và ΔACB vuông tại B có 

\(\widehat{BAH}\) chung

Do đó: ΔABH\(\sim\)ΔACB

7 tháng 3 2023

a.  Xét ΔABH và ΔACB có

∠A chung

∠AHB = ∠ABC = 90

⇒Đpcm

b.  AD định lý PYTAGO cho ΔABC ta tính đc AC=25 cm

vì ΔABH ∼ ΔACB ⇒ BH/BC = AB/AC

thay số vào và giải

c. câu c tự cm theo định lý Talet đảo

 

a: Xét ΔABH vuông tại H và ΔACB  vuông tại B có

góc BAH chung

=>ΔABH đồng dạng với ΔACB

b: \(AC=\sqrt{7^2+24^2}=25\left(cm\right)\)

BH=7*24/25=6,72(cm)

 

2 tháng 4 2017

mk cũng đang mắc câu này,bạn bk chưa trả lời giúp mk đi

10 tháng 2 2018

kho ua

bài nãy dễ mk ms đk cô giáo chữa cho  ^~^

27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;