Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEC vuông tại E và ΔAHB vuông tại H có
góc EAC chung
=>ΔAEC đồng dạng với ΔAHB
=>AE/AH=AC/AB
=>AE*AB=AC*AH
b: Xét ΔCBH vuông tại H và ΔACF vuông tại F có
góc BCH=góc CAF
=>ΔCBH đồng dạng với ΔACF
a: Xét ΔABH vuông tại H và ΔACB vuông tại B có
\(\widehat{BAH}\) chung
Do đó: ΔABH\(\sim\)ΔACB
a. Xét ΔABH và ΔACB có
∠A chung
∠AHB = ∠ABC = 90
⇒Đpcm
b. AD định lý PYTAGO cho ΔABC ta tính đc AC=25 cm
vì ΔABH ∼ ΔACB ⇒ BH/BC = AB/AC
thay số vào và giải
c. câu c tự cm theo định lý Talet đảo
a: Xét ΔABH vuông tại H và ΔACB vuông tại B có
góc BAH chung
=>ΔABH đồng dạng với ΔACB
b: \(AC=\sqrt{7^2+24^2}=25\left(cm\right)\)
BH=7*24/25=6,72(cm)
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
1) Xét hai tam giác vuông: ∆ABH và ∆ACE có:
∠A chung
∆ABH ∽ ∆ACE (g-g)
⇒ AB.AE = AH.AC
b) Sửa đề: ∆IBE ∽ ∆ICH
∆ACE vuông tại E
⇒ ∠BCE + ∠BCA = 90⁰
⇒ ∠BCE + ∠ICH = 90⁰
∆BCE vuông tại E
⇒ ∠BCE + ∠CBE = 90⁰
⇒ ∠BCE + ∠IBE = 90⁰
Mà ∠BCE + ∠ICH = 90⁰ (cmt)
⇒ ∠IBE = ∠ICH
Xét ∆IBE và ∆ICH có:
∠BIE = ∠CIH (đối đỉnh)
∠IBE = ∠ICH (cmt)
⇒ ∆IBE ∽ ∆ICH (g-g)
c) Do ABCD là hình bình hành (gt)
⇒ AB // CD và AD // BC
⇒ AB // CQ
Theo hệ quả của định lý Thales
Do AD // BC (cmt)
⇒ AK // BC
Theo hệ quả của định lý Thales
Từ (1) và (2)
⇒ HB.HB = HK.HQ
Hay BH.BH = HK.HQ