Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Kẻ AH⊥aAH⊥a kéo dài, HA cắt b tại B.
- Kẻ AK⊥bAK⊥b kéo dài KA cắt a tại C.
- Kẻ AI⊥BCAI⊥BC, đường thẳng AI đi qua O.
Vì trong ∆OBC có 2 đường cao BH và CK cắt nhau tại A nên A là trực tâm của ∆OBC.
OA là đường cao thứ 3 nên OA⊥BCOA⊥BC
AI⊥BCAI⊥BC nên đường thẳng OA và đường thẳng AI trùng nhau hay đường thẳng AI đi qua O.
Vẽ đường thẳng xy đi qua điểm O sao cho xy // a
Gọi tên các đỉnh như hình vẽ
Ta có \(\widehat{A1}=\widehat{B1}=38^0\)(vì xy//a ,so le trong)
Vì a//b mà xy//a \(\Rightarrow xy\)//b
Ta có \(\widehat{O2}+\widehat{B1}=180^0\)(vì xy//b,trong cùng phía)
Hay \(\widehat{O2}+132^0=180^0\)
\(\Rightarrow\widehat{O2}=180^0-132^0\)
Vậy \(\widehat{O2}=48^0\)
Ta có \(\widehat{O1}+\widehat{O2}=\widehat{AOB}\)
Hay \(38^0+48^0=x\)
Suy ra \(x=86^0\)
Đáp án bài 57:
Kẻ c//a qua O ⇒ c//b
Ta có: a//c ⇒ ∠O1 = ∠A1 ( So le trong)
⇒ ∠O1 = 380
b//c ⇒ ∠O2 + ∠B1 = 1800 ( Hai góc trong cùng phía)
⇒ ∠O2 = 480
Vậy x = ∠O1 + ∠O2 = 380 + 480 x = 860
Thứ tự vẽ đường thẳng d' và d′⊥d như sau (xem hình vẽ).
- Đặt êke sao cho một mép góc vuông của êke đi qua điểm A, mép gấp vuông kia của êke nằm trên doạn thẳng d.
- Kẻ đoạn thẳng theo mép góc vuông của êke đi qua điểm A.
- Dùng êke kéo dài đoạn thẳng trên về hai phái thành đường thẳng d' vuông góc với d.
Minh họa cách vẽ đường thẳng d' đi qua điểm A và vuông gó với đường thẳng d cho trước chỉ bằng êke bằng hình vẽ sau đây:
.
Áp dụng kết quả bài tập 69 (chương III – SGK) ta có cách vẽ sau:
- Vẽ đường thẳng d qua M và vuông góc với a.
- Vẽ đường thẳng l qua M và vuông góc với b.
- d cắt a, b lần lượt tại A và B.
- l cắt a, b lần lượt tại C và D.
- Vẽ đường thẳng c qua M vuông góc với BC
⇒ c là đường qua M và qua giao điểm của hai đường a, b
Chứng minh:
Giả sử a cắt b tại điểm O.
Khi đó BA, DC là hai đường cao của ∆OBC.
Mà BA và DC cắt nhau tại M nên M là trực tâm ∆OBC.
Do đó OM cũng là đường cao nên OM ⟘ BC hay đường thẳng qua M vuông góc với BD thì đi qua O.
a: Gọi N là giao điểm của BC với a
Nếu M khác N
Vì M nằm trên đường trung trực của AC
nên MA=MC
XétΔMBC có BC<MB+MC
=>BC<MA+MB
Nếu M trùng với N thì nối NA
Vì N nằm trên đường trung trực của AC nên NA=NC
=>MA+MB=NA+NB=BC
=>MA+MB>=BC
b: MA+MB nhỏ nhất khi M là giao điểm của BC với a
a) Ta có PA = PB (A, B nằm trên cung tròn có tâm P) CA = CB (hai cung tròn AB có tâm A và B có bán kính bằng nhau; C la giao điểm của 2 cung)
Vậy P; C cách đều A và B nên đường thẳng CP là đường trung trực của AB nên
PC ⊥ d
b) Một cách vẽ khác
- Lấy điểm A bất kì trên d
- Vẽ cung tròn tâm A bán kính AP cắt đường thẳng d tại M
- Vẽ cung tròn tâm M bán kính MP cắt cung tròn tâm A tại C
- Vẽ đường thẳng PC, đường thẳng PC chính là đường vuông góc với d.
=> PC ⊥ d (đpcm)
Hướng dẫn:
a) Ta có PA = PB (A, B nằm trên cung tròn có tâm P) CA = CB (hai cung tròn AB có tâm A và B có bán kính bằng nhau; C la giao điểm của 2 cung)
Vậy P; C cách đều A và B nên đường thẳng CP là đường trung trực của AB nên
PC ⊥ d
b) Một cách vẽ khác
- Lấy điểm A bất kì trên d
- Vẽ cung tròn tâm A bán kính AP cắt đường thẳng d tại M
- Vẽ cung tròn tâm M bán kính MP cắt cung tròn tâm A tại C
- Vẽ đường thẳng PC, đường thẳng PC chính là đường vuông góc với d.
=> PC ⊥ d (đpcm)
- Vẽ đường thẳng qua M vuông góc với a tại P cắt b tại Q.
- Vẽ đường thẳng qua M vuông góc với b tại R cắt a tại S.
- Vẽ đường thẳng qua M vuông góc với SQ.
=> Đây chính là đường qua M và qua giao điểm của hai đường a, b.
Áp dụng bài 69 ta có cách vẽ sau:
-Vẽ đường thẳng qua M vuông góc với a tại A cắt b tại B.
-Vẽ đường thẳng qua M vuông góc với b tại C cắt a tại D.
-Vẽ đường thẳng c qua M vuông góc với BD
=>C là đường qua M và qua giao điểm của hai đường a, b
Vì 3 đường thẳng a, b, c là 3 đường cao trong ∆DMB nên đồng quy