K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2021

TRẢ LỜI:

Xét tam giác AHB vuông tại H

Áp dụng định lí Py-ta-go ta có:

AB2 = AH2+ HB2 (1)

Xét tam giác AHC vuông tại H

Áp dụng định lí Py-ta-go ta có:

AC2 = AH2 + HC2 (2)

Nếu HB > HC ⇒ HB2 > HC2.

⇒ AH2 + HB2 > AH2+ HC2

Kết hợp với 2 điều kiện (1) và (2)

⇒ AB2 > AC

⇒ AB > AC

13 tháng 2 2019

- Nếu HB = HC ⇒ HB2 = HC2.

⇒ AH2 + HB2 = AH2 + HC2

Kết hợp với 2 điều kiện (1) và (2)

⇒ AB2 = AC2

⇒ AB = AC

- Nếu AB = AC ⇒ AB2 = AC2

Kết hợp với 2 điều kiện (1) và (2)

⇒ AH2 + HB2 = AH2 + HC2

⇒ HB2 = HC2

⇒ HB = HC

19 tháng 4 2017

Vì AB < AC (gt) mà AB, AC là hai đường xiên có hai hình chiếu tương ứng là HB và HC nên HB > HC

12 tháng 3 2018

Vì AC< AB (gt)

=> HB<HC ( theo định lí 2 )

Vậy kết luận C đúng .

23 tháng 9 2017

AB > AC ⇒ AB2 > AC2

Kết hợp với 2 điều kiện (1) và (2)

⇒ AH2 + HB2 > AH2 + HC2

⇒ HB2 > HC2

⇒ HB > HC

25 tháng 10 2019

Xét tam giác AHB vuông tại H

Áp dụng định lí Py-ta-go ta có:

AB2 = AH2 + HB2 (1)

Xét tam giác AHC vuông tại H

Áp dụng định lí Py-ta-go ta có:

AC2 = AH2 + HC2 (2)

Nếu HB > HC ⇒ HB2 > HC2.

⇒ AH2 + HB2 > AH2 + HC2

Kết hợp với 2 điều kiện (1) và (2)

⇒ AB2 > AC2

⇒ AB > AC

19 tháng 4 2017

a) AB > AH; AC > AH.

b) Nếu HB > HC thì AB > AC.

hoặc có thể HB < HC thì AB < AC.

c) Nếu AB > AC thì HB > HC.

hoặc có thể AB < AC thì HB < HC.

19 tháng 4 2017

Trả lời

a) AB > AH; AC > AH.

b) Nếu HB > HC thì AB > AC.

hoặc có thể HB < HC thì AB < AC.

c) Nếu AB > AC thì HB > HC.

hoặc có thể AB < AC thì HB < HC.

30 tháng 6 2016

a) AB.>..AH; AC.>..AH

b) Nếu HB..>.HC thì AB.>..AC

Nếu HB..<.HC thì AB.<..AC

c) Nếu AB.<..AC thì HB.<..HC

Nếu AB.>..AC thì HB..>.HC

8 tháng 4 2021

A B C H

Theo định lý Pytago ta có:

\(AB^2=BH^2+AH^2\)

\(AC^2=CH^2+AH^2\)

Vì \(BH< CH\Leftrightarrow BH^2< CH^2\Leftrightarrow BH^2+AH^2< CH^2+AH^2\)

\(\Rightarrow AB^2< AC^2\Rightarrow AB< AC\)

=> đpcm

Chọn C

9 tháng 7 2019

A B C D E H F

Tam giác ABC có : góc ABC > góc ACB (gt)

=> AC > AB (đl)

AD _|_ BC (gt) 

D thuộc BC

=> BD < DC

H thuộc AD 

=> HB < HC  

b, AD; BE là đường cao

ADcắt BE tại H 

=> CH là đường cao (đl)

=> CH _|_ AB (đn)

HF _|_ AB (gt)

=> C; H; F thẳng hàng

9 tháng 7 2019

c.

\(AB>AD;AC>AD\left(ch>cgv\right)\)

\(\Rightarrow AB+AC>2AD\left(đpcm\right)\)

d

Kẻ \(HN//AC;HM//AB\)

Theo tính chất cặp đoạn chắn,ta có:\(HM=AN\)

Áp dụng bất đẳng thức tam giác ta có:

\(HA< AM+HM=AM+AN\left(1\right)\)

Do \(BH\perp AC;HN//AC\Rightarrow NH\perp HN\)

Xét  \(\Delta BHN\) ta có:\(BH< BN\left(2\right)\)

Tương tự trong tam giác CHM có \(CH< CM\left(3\right)\)

Tiừ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow HA+HB+HC< AM+AN+BN+CM=AB+AC\)

Tương tự,ta có:

\(HA+HB+HC< AB+BC\)

\(HA+HB+HC< BC+AC\)

\(\Rightarrow3\left(HA+HB+HC\right)< 2\left(AB+BC+CA\right)\)

\(\Rightarrow HA+HB+HC< \frac{2}{3}\left(AB+BC+CA\right)\)