Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bai1:
\(-2x+\frac{3}{5}\le\frac{3\left(2x-7\right)}{3}\Leftrightarrow-10x+3\le5\left(2x-7\right)\Leftrightarrow-10x+3\le10x-35\)
\(\Leftrightarrow\left(10+10\right)x\ge3+35\Rightarrow x\ge\frac{38}{20}=\frac{19}{10}\)
Bài
\(\left\{\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\Leftrightarrow\left(I\right)\left\{\begin{matrix}x>1-m\\x< 3m-2\end{matrix}\right.\)
Hệ (I) có nghiệm cần m thỏa mãn:
\(1-m< 3m-2\Leftrightarrow1+2< 3m+m\Rightarrow m>\frac{3}{2}\)
Kết luận: để hệ có nghiệm cần: m>3/2
ta có:
(x-y)2\(\ge\)0 \(\forall\)x,y\(\in R\)
(x-y)2= x2-2xy+y2=(x+y)2-4xy=S2-4P\(\ge\)0
vậy hệ pt có nghiệm khi S2\(\ge\)4P
a) Xét \(a=0\) . Thay vào hệ phương trình ta có:
\(\left\{{}\begin{matrix}3x=5\\2x+y=b\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=b-2x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=b-\dfrac{10}{3}\end{matrix}\right.\).
Vậy khi \(a=0\) và mỗi giá trị \(b\in R\) hệ có duy nhất nghiệm: \(\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=b-\dfrac{10}{3}\end{matrix}\right.\).
Vậy \(a\ne0\). Khi đó hệ có vô số nghiệm khi và chỉ khi:
\(\dfrac{2}{3}=\dfrac{1}{a}=\dfrac{b}{5}\).
\(\dfrac{2}{3}=\dfrac{1}{a}\)\(\Leftrightarrow a=\dfrac{3}{2}\); \(\dfrac{2}{3}=\dfrac{b}{5}\)\(\Leftrightarrow b=\dfrac{10}{3}\).
Vậy \(\left(a;b\right)=\left(\dfrac{3}{2};\dfrac{10}{3}\right)\) thì hệ có vô số nghiệm.
b) Xét a = 0. Thay vào hệ phương trình ta có:
\(\left\{{}\begin{matrix}2y=0\\3x-4y=b+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{b+1+4y}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{b+1}{3}\end{matrix}\right.\).
Vậy khi a = 0 và với mỗi \(b\in R\) hệ phương trình có nghiệm duy nhất là: \(\left\{{}\begin{matrix}y=0\\x=\dfrac{b+1}{3}\end{matrix}\right.\).
Vậy \(a\ne0\). Khi đó hệ có vô số nghiệm khi:\(\dfrac{3}{a}=\dfrac{-4}{2}=\dfrac{b+1}{a}\).
\(\dfrac{3}{a}=\dfrac{-4}{2}\)\(\Rightarrow a=\dfrac{-3}{2}\); \(\dfrac{-4}{2}=\dfrac{b+1}{a}\)\(\Rightarrow b=-2a-1\)\(\Leftrightarrow b=2\).
Vậy \(\left(a;b\right)=\left(\dfrac{-3}{2};2\right)\) hệ có vô số nghiệm.
Đặt \(\left\{{}\begin{matrix}\sqrt{7x+y}=a\ge0\\\sqrt{x+y}=b\ge0\end{matrix}\right.\) \(\Rightarrow x-y=\dfrac{a^2-4b^2}{3}\)
Hệ trở thành:
\(\left\{{}\begin{matrix}a+b=6\\b+\dfrac{a^2-4b^2}{3}=m\end{matrix}\right.\)
\(\Rightarrow6-a+\dfrac{a^2-4\left(6-a\right)^2}{3}=m\)
\(\Leftrightarrow-a^2+15a-42=m\)
Với \(0\le a\le6\Rightarrow-42\le-a^2+15a-42\le12\)
\(\Rightarrow-42\le m\le12\)
m nào
đề bài là tìm a nhé