Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hệ có nghiệm duy nhất <=> \(\dfrac{\left(m+1\right)}{m}\ne\dfrac{-1}{1}\Leftrightarrow\dfrac{m+1}{m}\ne-1\Leftrightarrow m+1\ne-m\\ \Leftrightarrow2m\ne-1\Leftrightarrow m\ne-\dfrac{1}{2}\)
vậy \(m\ne-\dfrac{1}{2}\) thì hệ có nghiệm duy nhất là x=\(\dfrac{3+m}{2m+1}\) và y=\(\dfrac{m^2-2m}{2m+1}\)
x+y>0 <=> \(\dfrac{3+m}{2m+1}+\dfrac{m^2-2m}{2m+1}>0\Leftrightarrow\dfrac{m^2-m+3}{2m+1}>0\)(*)
vì \(m^2-m+3=m^2-2\cdot\dfrac{1}{2}m+\dfrac{1}{4}+\dfrac{11}{4}=\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0,\forall m\)nên (*) <=> 2m+1>0 <=> m>-1/2
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
Hệ pt \(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+\left(m-1\right)y=2\left(1\right)\\\left(m+1\right)x-y=m+1\left(2\right)\end{cases}}\)
Nếu \(m+1=0\Rightarrow m=-1\Rightarrow\hept{\begin{cases}-2y=2\\-y=0\end{cases}\left(ktm\right)}\)
Nếu \(m+1\ne0\Rightarrow m^2y=m+1\Rightarrow y=\frac{m+1}{m^2}\Rightarrow x=2-\left(m-1\right)y\)
\(\Rightarrow x=2-\frac{\left(m-1\right)\left(m+1\right)}{m^2}=\frac{m^2+1}{m^2}\)
Yêu cầu bài toán \(\Leftrightarrow\frac{m^2+1}{m^2}>\frac{m+1}{m^2}\Rightarrow\frac{m^2-m}{m^2}>0\Rightarrow m^2-m>0\Rightarrow\orbr{\begin{cases}m< 0\\m>1\end{cases}}\)
Vậy với \(\orbr{\begin{cases}m< 0\\m< 1\end{cases};m\ne-1}\)thì .....
Trừ pt trên cho dưới:
\(\left(m-1\right)x=m-1\)
- Với \(m=1\Rightarrow\) hệ có vô số nghiệm (loại)
- Với \(m\ne1\Rightarrow x=\frac{m-1}{m-1}=1\)
\(\Rightarrow y=-m-x=-m-1\)
Để \(y^2=x\)
\(\Leftrightarrow\left(-m-1\right)^2=1\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
giúp mik đc ko, mikk cần gấp
Ta có: \(\left\{{}\begin{matrix}\left(m-1\right)x-y=2\\mx+y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x+mx=2+m\\mx+y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-1\right)=m+2\\mx+y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=m-mx=m-m\cdot\dfrac{m+2}{2m-1}=m-\dfrac{m^2+2m}{2m-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=\dfrac{2m^2-m-m^2-2m}{2m-1}=\dfrac{m^2-3m}{2m-1}\end{matrix}\right.\)
Để x+y>0 thì \(\dfrac{m+2}{2m-1}+\dfrac{m^2-3m}{2m-1}>0\)
\(\Leftrightarrow\dfrac{m+2+m^2-3m}{2m-1}>0\)
\(\Leftrightarrow\dfrac{m^2-2m+2}{2m-1}>0\)
mà \(m^2-2m+2>0\forall m\)
nên 2m-1>0
\(\Leftrightarrow2m>1\)
hay \(m>\dfrac{1}{2}\)
Vậy: Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y>0 thì \(m>\dfrac{1}{2}\)