K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

\(hpt\Leftrightarrow\hept{\begin{cases}m\left(m+1\right)x+2my=4m-2m^2\\\left(2-m\right)x+my=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m^2+2m-2\right)x=-2m^2+4m-1\\\left(2-m\right)x+my=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{-2m^2+4m-1}{m^2+2m-2}\\y=\frac{1-\left(2-m\right)x}{m}\end{cases}}\)

a) Thay m=-1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}3x+y=7\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\x+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)

Vậy: Khi m=-1 thì (x,y)=(1;4)

b) Ta có: \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+y=2m+9\\x=5-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left(5-y\right)+y=2m+9\\x=5-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}15-3y+y=2m+9\\x=5-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2y=2m-6\\x=5-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-m+3\\x=5-\left(-m+3\right)=5+m-3=m+2\end{matrix}\right.\)

Ta có: \(x^2+2y^2=18\)

\(\Leftrightarrow\left(m+2\right)^2+2\cdot\left(-m+3\right)^2=18\)

\(\Leftrightarrow m^2+4m+4+2\left(m^2-6m+9\right)-18=0\)

\(\Leftrightarrow m^2+4m-14+2m^2-12m+18=0\)

\(\Leftrightarrow3m^2-8m+4=0\)

\(\Leftrightarrow3m^2-2m-6m+4=0\)

\(\Leftrightarrow m\left(3m-2\right)-2\left(3m-2\right)=0\)

\(\Leftrightarrow\left(3m-2\right)\left(m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3m-2=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3m=2\\m=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{2}{3}\\m=2\end{matrix}\right.\)

4 tháng 1 2019

mình giải tắt nhé vì mình không giỏi dùng công thức. Thông cảm nha.

1.

\(\left\{{}\begin{matrix}3x-y=2m+3\\x+y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m}{4}+1\\y=\dfrac{-5m}{4}\end{matrix}\right.\)

vậy phương trình có nghiệm duy nhất là \(\left(\dfrac{m}{4}+1;\dfrac{-5m}{4}\right)\)

Thay vào đẳng thức ta được:

\(\left(\dfrac{m}{4}+1\right)^2+\left(\dfrac{-5m}{4}\right)^2=5\\ \Leftrightarrow x=\)

6 tháng 1 2019

k sao đâu bạn mình cảm ơn ạ

AH
Akai Haruma
Giáo viên
20 tháng 1 2024

Lời giải:

a.

 

Từ $x+y=2\Rightarrow y=2-x$. Thay vào PT(2):
$(m+1)x+m(2-x)=7$

$\Leftrightarrow x+2m=7$

$\Leftrightarrow x=7-2m$

$y=2-x=2-(7-2m)=2m-5$

Vậy hpt có nghiệm $(x,y)=(7-2m, 2m-5)(*)$

Nếu $x,y$ có 1 số $\geq 0$, một số $\leq 0$ thì $xy\leq 0< 1$

Nếu $x,y$ cùng $\geq 0$ thì áp dụng BĐT Cô-si:

$2=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 1$

Vậy tóm lại $xy\leq 1(**)$
Từ $(*); (**)$ suy ra với mọi $m$ thì hpt luôn có nghiệm $x,y$ thỏa mãn $xy\leq 1$

b.

$xy>0$

$\Leftrightarrow (7-2m)(2m-5)>0$

$\Leftrightarrow 7> 2m> 5$

$\Leftrightarrow \frac{7}{2}> m> \frac{5}{2}$

Do $m$ nguyên nên $m=3$

Thử lại thấy đúng.

 

31 tháng 3 2020

\(I\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\2\left(3-y\right)+my=m+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\6-2y+my=m+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y-3\\my-2y=m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y-3\\y\left(m-2\right)=m-1\end{matrix}\right.\)

Để hpt có nghiệm duy nhất thì \(m-2\ne0\Leftrightarrow m\ne2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3-\frac{m+5}{m-1}\\y=\frac{m-1}{m-2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{2m-5}{m-2}\\y=\frac{m-1}{m-2}\end{matrix}\right.\)

1)\(x+2y=3\Leftrightarrow\frac{m-1}{m-2}+\frac{4m-10}{m-2}=3\)

\(\Leftrightarrow\frac{5m-11}{m-2}=3\)

Do \(m\ne2\Rightarrow5m-11=3m-6\)

\(\Leftrightarrow2m=5\)

\(\Rightarrow m=\frac{5}{2}\left(t/m\right)\)

2) \(x>1,y< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{m-1}{m-2}>0\left(1\right)\\\frac{2m-5}{m-2}< 0\left(2\right)\end{matrix}\right.\)

Từ 1 : \(\frac{m-1}{m-2}>0\)

TH1:\(\Rightarrow\left\{{}\begin{matrix}m-1>0\\m-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m>1\\m>2\end{matrix}\right.\) \(\Rightarrow m>2\)

TH2 : \(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\m-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 1\\m< 2\end{matrix}\right.\)\(\Rightarrow m< 1\)

Từ 2 : \(\frac{2m-5}{m-2}< 0\)

TH1: \(\Leftrightarrow\left\{{}\begin{matrix}2m-5>0\\m-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m>\frac{5}{2}\\m< 2\end{matrix}\right.\) \(\Rightarrow\frac{2}{5}< m< 2\)

TH2 \(\Leftrightarrow\left\{{}\begin{matrix}2m-5< 0\\m-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< \frac{5}{2}\\m>2\end{matrix}\right.\)\(\Rightarrow\frac{5}{2}>m>2\)

Vậy để \(x>1,y< 0\) thì

\(\frac{2}{5}< m< 2\) hoặc \(\frac{5}{2}>m>2\)