\(\hept{\begin{cases}2x-y=3\\\\\left(2m-1\right)x+y=-0,5\end{cases}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

Theo đề ta có hệ : 

\(\hept{\begin{cases}2x-y=3\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{3}\end{cases}}\)

=> \(\left(2m-1\right)\frac{4}{3}-\frac{1}{3}=-0,5\)

<=> m = 7/16

10 tháng 2 2018

Hệ pt có nghiệm thỏa mãn x+y = 1 => m = 1

Khi đó : hệ pt <=> x+y = 1

                             2x-y = 0

<=> x+y=1

       x+y+2x-y = 1

<=> x+y=1

       3x=1

<=> x=1/3

       y=2/3

Vậy .............

Tk mk nha

12 tháng 2 2018

\(\hept{\begin{cases}x+y=4\left(1\right)\\2x+3y=m\left(2\right)\end{cases}}\)

từ \(\left(1\right)\)ta có: \(x=4-y\)\(\left(3\right)\)

thay \(\left(3\right)\) vào  \(\left(2\right)\)ta được 

\(2.\left(4-y\right)+3y=m\)

\(8-2y+3y=m\)

\(8+y=m\)

\(y=m-8\) \(\left(4\right)\)

hệ phương trình có nghiệm duy nhất khi pt \(\left(4\right)\)  có nghiệm duy nhất 

ta thấy pt (4) luôn có nghiệm duy nhất với \(\forall y\in R\)

vậy \(\forall y\in R\)thì hệ pt đã cho có nghiệm  \(\left(x;y\right)=\left(4-y;m-8\right)\)

theo bài ra \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4-y>0\\m-8< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}y>4\\m< 8\end{cases}}\)

vậy \(m< 8\)  là tập hợp các giá trị cần tìm 

12 tháng 2 2018

Ta có :

\(\hept{\begin{cases}x+y=4\\2x+3y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=4\\x+x+y+y+y=m\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=4\\4+4+y=m\end{cases}\Leftrightarrow\hept{\begin{cases}y=4-x\\8+4-x=m\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=4-12+m\\x=12-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=m-8\\x=12-m\end{cases}}\)

\(\Leftrightarrow\)\(x+y=m-8+12-m=4\)

\(\Leftrightarrow\hept{\begin{cases}y=4-8\\x=12-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=-4\\x=8\end{cases}}}\)

Thoả mãn \(x>0;y< 0\)

Vậy \(x=8\) và \(y=-4\)

28 tháng 5 2021

Để pt có nghiệm khi duy nhất khi \(\frac{1}{2}\ne-\frac{2}{1}\)* luôn đúng *

Ta có : \(\hept{\begin{cases}x-2y=m+3\\2x+y=2m+1\end{cases}\Leftrightarrow\hept{\begin{cases}2x-4y=2m+6\\2x+y=2m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}-5y=5\\x-2y=m+3\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=m+1\end{cases}}}\)

Thay vào biểu thức trên ta có : \(3x+2y>3\Rightarrow3\left(m+1\right)-2>3\)

\(\Leftrightarrow3m+3-2>3\Leftrightarrow3m>2\Leftrightarrow m>\frac{2}{3}\)

12 tháng 2 2018

từ \(\hept{\begin{cases}x< 1\\y< 6\end{cases}}\)ta có: \(\hept{\begin{cases}2x+y< 8\\3x+2y< 15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3m+1< 8\\2m-3< 15\end{cases}}\Leftrightarrow\hept{\begin{cases}m< \frac{7}{3}\\m< 9\end{cases}}\Rightarrow m< \frac{7}{3}\)

Vậy hệ phương trình thỏa mãn khi m<7/3

Xét hệ: \(\hept{\begin{cases}mx+y=5\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}3mx+3y=15\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}mx+y=5\\mx=9\left(\cdot\right)\end{cases}}\)

Hệ pt đã cho có nghiệm duy nhất <=> \(\left(\cdot\right)\)có nghiệm duy nhất m \(\ne\)0

Khi đó hệ đã cho có nghiệm duy nhất \(\hept{\begin{cases}x=\frac{9}{m}\\y=-4\end{cases}}\)

Ta có: (2m - 1)x + (m + 1)y = m

Hay (2m - 1).\(\frac{9}{m}\) + -4(m + 1) = m

<=> \(\frac{18m-9}{m}-4m-4-m=0\)

<=> \(\frac{18m-9-4m^2-4m-m^2}{m}=0\)

=> -5m2 + 14m - 9 = 0

<=> 5m2 - 14m + 9 = 0

<=>5m2 - 5m - 9m + 9 = 0

<=> 5m(m - 1) - 9(m - 1) = 0

<=> (5m - 9)(m - 1) = 0 <=> \(\orbr{\begin{cases}m=\frac{9}{5}\\m=1\end{cases}\left(TM\right)}\)

Vậy với m = 9/5 hoặc m = 1 thì thỏa mãn đề bài

2 tháng 4 2020

Với m =1 suy ra : 

\(\hept{\begin{cases}2x-y=1\\-x+y=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y=2x-1\\-x+2x-1=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y=2.3-1=5\\x=3\end{cases}}\)

b ) Để hệ có nghiệm x+2y=3 

\(\Rightarrow\hept{\begin{cases}x+2y=3\\-x+y=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3-2y\\-\left(3-2y\right)+y=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3-2.\frac{5}{3}=-\frac{1}{3}\\y=\frac{5}{3}\end{cases}}\)

\(\Rightarrow2.\left(-\frac{1}{3}\right)-\frac{5}{3}=2m-1\Rightarrow m=-\frac{2}{3}\)

14 tháng 11 2018

a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)

\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)

Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.

14 tháng 11 2018

b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)

\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)

\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)

20 tháng 7 2018

Help me!♥♥!

23 tháng 7 2018

từ hệ pt tinh x,y theo m là ra