K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2020

A B C D H 8cm 6cm

                      Giải

a) Xét\(\Delta AHB\)\(\Delta BCD\)có:

        \(\widehat{AHB}=\widehat{BCD}=90^o\)

       \(\widehat{ABH}=\widehat{BDC}\) (so le trong)

    =>\(\Delta AHB~\Delta BCD\) (g.g)

b) Xét\(\Delta AHD\)\(\Delta AHB\)có:

        \(\widehat{AHD}=\widehat{BHA}=90^o\)

        \(\widehat{DAH}=\widehat{ABH}\)(cùng phụ\(\widehat{HAB}\))

 =>\(\Delta AHD~\Delta AHB\) (g.g)

Mà ở cmt ta thấy\(\Delta AHB~\Delta BCD\)

Suy ra\(\Delta AHD~\Delta DCB\) (tính chất bắc cầu)

c) Áp dụng định lí Pi-ta-go vào tam giác vuông BCD có:

            \(BD^2=BC^2+DC^2\)

            \(BD^2=6^2+8^2\)   

           \(BD^2=36+64\)

           \(BD=\sqrt{100}=10\left(cm,BD>0\right)\)

  Xét tam giác vuông ABD có:

     \(AH=\frac{AB.AD}{BD}=\frac{48}{10}=4,8\left(cm\right)\)

 Áp dụng tính tính chất Pi-ta-go vào tam giác vuông AHB có:

        \(AB^2=AH^2+HB^2\)

        \(8^2=4,8^2+HB^2\)

        \(HB^2=8^2-4,8^2\)

        \(HB^2=40,96\)

        \(HB=\sqrt{40,96}=6,4\left(cm,HB>0\right)\)

=> \(HD=BD-HB=10-6,4=3,6\left(cm\right)\)

Còn HC bn tự tính nhé!

 #hoktot<3# 

    

            

6 tháng 5 2021

a) Ta có :

AD = BC = 6 cm

Áp dụng hệ thức lượng trong tam giác ABD vuông tại A, ta có :

1/AD^2 + 1/AB^2 = 1/AH^2

<=> 1/6^2 + 1/8^2 = 1/AH^2

<=> AH = 4,8(cm)

b)

Áp dụng Pitago trong tam giác BCD vuông tại C có :

BC^2 + CD^2 = BD^2

<=> 6^2 + 8^2 = DB^2

<=> BD = 10(cm)

Xét hai tam giác vuông AHB và BCD có :

AH/BC = 4,8/6 = 4/5

AB/BD = 8/10 = 4/5

Do đó tam giác AHB đồng dạng với tam giác BCD

13 tháng 4 2020

A B C D H

a/ Xét \(\Delta AHB\)\(\Delta BCD\), có:

\(\left\{{}\begin{matrix}\widehat{AHB}=\widehat{DCB}\left(=90^o\right)\\\widehat{ABD}=\widehat{BDC}\left(ABCDlahcn\right)\end{matrix}\right.\)\(\Rightarrow\Delta AHB\sim\Delta BCD\left(g.g\right)\) (ĐPCM)

b/ Xét \(\Delta AHD\)\(\Delta BAD\), có:

\(\left\{{}\begin{matrix}\widehat{AHD}=\widehat{BAD}\left(=90^o\right)\\\widehat{ADB}chung\end{matrix}\right.\)\(\Rightarrow\Delta AHD\sim\Delta BAD\left(g.g\right)\) (ĐPCM)

c/ Vì \(\Delta AHD\sim\Delta BAD\Rightarrow\frac{AD}{HD}=\frac{BD}{AD}\Leftrightarrow AD^2=DH.DB\) (ĐPCM)

d/ Áp dụng định lý Pitago, ta có: \(AC=\sqrt{8^2+6^2}=10\left(cm\right)\Rightarrow BD=10\left(cm\right)\)

Ta có: \(AD^2=DH.DB\left(cmt\right)\Leftrightarrow BC^2=DH.BD\)\(\Rightarrow DH=\frac{BC^2}{BD}=\frac{6^2}{10}=3,6\left(cm\right)\)

Áp dụng định lý Pitago, ta có: \(AH=\sqrt{AD^2-HD^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)

KL: ....................................

a: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: AH=6*8/10=4,8cm

 

16 tháng 2 2021

100 nha

a: BD=căn 8^2+6^2=10cm

AH=6*8/10=4,8cm

b: Xét ΔADH vuông tại H và ΔCBA vuông tại A có

góc ADH=góc BCA

=>ΔADH đồng dạng với ΔCBA

c: Xét ΔADM và ΔACN có

AD/AC=DM/CN

góc ADM=góc ACN

=>ΔADM đồng dạng với ΔACN